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CHAPTER 1. INTRODUCTION 

The purpose of this work is to further the state of the art in ultrasonic inverse 

scattering for NDE and remote sensing applications. Ultrasonic probing is an effec

tive method of acquiring information for a variety of types of objects in NDE. The 

application may vary from remote sensing of large tanks containing hazardous mate

rial to imaging of flaws in industrial parts. In all of these applications, one extracts 

information about objects under probe from a voltage due to back-scattered and/or 

transmission scattered field obtained by one or an array of transducers. In these 

applications, the quality of testing and evaluation is adversely affected by problems 

such as limited aperture and limited temporal bandwidth. These problems are com

pounded by the lack of accurate phase information and use of inaccurate models. The 

importance of the above factors are widely known, however, much work is needed to 

find methods of reducing their impact on the quality evaluation. 

In very general terms, inversion is the process of solving for a unknown quantity 

(%) that has been operated on by a known operator T to yield Y = T{X), which 

are given as measured data. In many cases, an exact closed form solution for A' = 

may not be found. In these cases, we can, generally, only find X over 

a discrete domain with finite accuracy using numerical methods. Hence, the term 

"inversion" in this work does not imply a complete access to the solution rather 
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it means approximate and partial estimate of It should be noted that this is 

natural when dealing with numerical inversion. Detection problem is an example 

of an inversion in which X is only partially recovered. Detection of a signal merely 

states that X is non zero and does not give any further information about A'. Imaging 

can be considered as solving for a transformed version of X say g{X), where g{X) is 

easier interpreted visually than J^(X). Finally, for cases where % is found explicitly 

we have inversion in the conventional sense. 

Normally, data which is available for inversion { Y  = J ^ [ X ] ) ,  covers only a part of 

the range of the operation. This introduces a non uniqueness problem which may be 

overcome by adding a priori information to the available data (i.e., "regularization 

of data"). In the present work, this information is added by optimization of an ap

propriate functional (e.g., (.62)^ norm, maximum entropy [6, 41], minimum support, 

etc.) using a variational approach [35, 22]. 

Our specific problem deals with calculating material parameters (or a function 

of the parameters) of the object using ultrasonic measurements. The object param

eters are found with a finite accuracy which is set by the noise level, extent of the 

coverage of measured data in both temporal and spatial domain, and accuracy of 

phase measurements between transducers. In Fig. 1.1, a common ultrasonic set up is 

shown. The two main modes of data collection are 1) pulse-echo and 2) pitch-catch. 

In the pulse-echo mode, the same transducer is used for both transmission and 

reception of signal while in the pitch-catch mode, transducer and receiver are different. 

The limited data in this application is caused by 1) finite temporal bandwidth of the 

transducer-receiver system, 2) limited angular access in the data collection process, 
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Transducer 

Pitch-Catch Mode 

Pulse-Echo Mode 

Scatterer 

Figure 1.1: Pulse-Echo and Pitch-Catch mode ultrasonic measurements. 
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3) lack of absolute phase between measurements at different locations (also known 

as the The Zero-of-Time problem), 4) nonlinear dependence of measurements on the 

scatterer, and 5) noise. The objective is to characterize the scatterer using limited 

data as mentioned above. Since, in this work, the emphasis is on the problem of the 

limited data in ultrasonic inversion, all the discussions regarding the forward problems 

are of secondary concern. In all of the inversions discussed, the forward process can be 

viewed as a black box which can be replaced with more efficient forward procedures as 

needed. Throughout this work an exact forward solution is used with the exception 

of the Chapter III in which the linearized inversion is discussed. Although using an 

exact forward solution may not be efficient, it was done in order to keep the study 

of compensation for limited data separate from the study of approximate forward 

scattering solutions. Although the choice of an efficient forward process was secondary 

to this work, an understanding of the forward process is of primary importance in 

any inversion effort. Approximate models provide adequate solution with much less 

computation [33, 18, 5, 19, 29, 4, 45, 44, 3]. However, they do not provide solutions 

that satisfy the physics governing the measurement process. In cases where more 

accurate solutions are needed an exact inversion is useful. The solution from an exact 

inversion, even when not providing a unique solution, is guaranteed to agree with the 

physical model governing the measurement process. In other words, a valid solution is 

obtained within the tolerances dictated by the available data. Furthermore, as it will 

be shown later, a unique solution may be obtained if additional a priori information 

such as minimum support is available. 

Inversion is usually an ill-posed problem. In order to obtain a solution one has to 

resort to regularization techniques. The ill-posedness of the inversion becomes even 
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more severe when data is limited. This problem of ill-posedness plagues almost all 

inversidn methods in many different fields (e.g., radio astronomy, X-ray tomography, 

and diffraction tomography and holography). • The most classic mathematical ap

proach in removing the singularities and ill-posedness are methods such as minimum 

(Lo)^) norm [34]. These methods make it possible to obtain a unique solution. How

ever, in many cases the obtained solution is not the best solution! The best solution 

is the one that is consistent with all the available qualitative as well as quantitative 

information. The most delicate task is to balance the degree of consistency with each 

available piece of information. For example, in radio astronomy, the obtained images 

suffer from artifacts which result from incomplete data. The image with the artifacts 

is consistent with the collected data, however, it is inconsistent with physical reality, 

the physical reality being the fact that most astronomical objects are isolated objects 

in a dark background. Although this information is only a qualitative observation 

based on experience, one can develop algorithms such that the image obtained is 

consistent with both data and observer's expectations. 

In limited-view-angle X-ray tomography, a similar phenomena also occurs [36, 

37, 38, 31j. Many researchers have proposed ways to include qualitative informa

tion. Many are based on procedures that are being used only because they result 

in expected images [36, 38, 31]. Recently, Roberts [31] proposed a minimal support 

function which for the first time was designed to achieve a well defined objective. 

He had observed that in almost all his X-ray tomograms reconstructed from limited 

data, the artifacts covered a large area in the image. He proposed a functional which 

would choose a solution which is consistent with the collected data and has minimum 

support. This observation is very important in that many important characteristics 
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of an NDE tomogram can be formulated in the form of such functionals (e.g., bound-

edness, smoothness, etc.). The solution can be obtained using appropriate methods 

to optimize the functional. The same type of approach can be used in diffraction 

tomography with limited data. 

In what follows, we will start by explaining the need for constrained inversion. 

This is done in Chapter II where the problem of limited data and its effects on 

inversion are discussed. In this chapter, it is shown how a non uniqueness problem 

can be remedied with added information through optimization of functionals. Finally, 

a few simple examples are presented to clarify the issue. Chapter III gives an overview 

of the physics of elastodynamic motion and defines all the equations that are used in 

the following chapters. In this chapter, we start with the general equation of motion 

in solids and then reduce it to the case of the ideal fluid. Also in this chapter, we 

discuss how the forward problem can be solved using a volume integral equation 

approach. Chapter IV presents a minimum support linearized inversion scheme for 

acoustic scatterers in an acoustic background. The limited data inversion results are 

presented along with improved results when appropriate functionals are optimized in 

the inversion. In Chapter V, we use an exact nonlinear model for the forward process 

and present results of inversion with/without using minimum support functional. 

Also, in this chapter, an inversion result is presented using experimental data where 

the zero-of-time is missing for the backscattered time signals. Finally, in Chapter VI, 

a nonlinear forward model is used for the inversion of elastic scatterers in elastic 

background. 
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CHAPTER 2. MINIMUM SUPPORT INVERSION 

Introduction 

The problem of inversion of incomplete data is common to many areas of NDE. 

Incomplete data is defined as lack of uniqueness in the solution. In general, given 

a forward problem u = !F{s), the inverse problem seeks to find s = .F"^(u), where 

F is a one-to-one mapping. Functions u and s can be defined as u : Du i—> Ru 

and Ds i—> Rs where Du and Ds are domains of functions u and s and Ru and 

Rs are ranges of functions u and s respectively. Let's assume, functions u and are 

defined such that they should be known entirely over domains Du and Ds to make 

functional ^ one-to-one. Let's define such domains as essential domain. In practice, 

measurements might be defined over a domain which is not essential and has to be 

mapped onto an essential domain. 

If T is one-to-one a can be obtained uniquely given a measurement xi  defined 

over its entire essential Du. However in most applications, a complete measurement 

u is not available, instead u is known over a finite subset of its domain Du which 

we denote as D^. One can envision a function u' such that it is zero over D^ and 

nonzero otherwise. Clearly, x = is a valid solution to the inverse problem 

since u  + u '  = J ^ ( x )  which is equal to u over D^. Since there can be infinite number 

of functions like and T is one-to-one, there will be infinite number of solutions to 
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the inverse problem. 

For example in the ultrasonic inverse problem, one may consider a real val

ued scatterer which is defined over i—>• R. The measurements are the complex 

scattered values measured in space and time, i.e. it is defined over R"^ i—>• C. In 

this example, the essential domain of measurement has a lower dimension than 4. 

This is evident from the fact that we are trying to find a function with a dimension 

4 = 3 + 1 from a function with a dimension 6 = 4 + 2. For example in Born inversion 

a measurement set defined as R^ i—y R is sufficient. The three dimensions of the 

essential domain may be either two dimensional space and one dimension time, or 

three dimension space. Normally, the measurement function is known over a finite 

region of space and time which does not map onto the entire essential domain. As 

rrientioned above, one may find infinite number of scatterers to match the function 

over a subdomain of measurements. 

Although a unique solution may never be obtained in most inverse problems, it 

is still possible to produce valuable information through inversion. Fortunately, in 

most applied problems, in addition to the measurements, there are other qualitative 

and/or quantitative information that can be used in getting a "better" (possibly 

unique) solution. To demonstrate this, the following example is presented. 

The Problem of Limited Data 

Let's consider a 3 x 3 grid on which there are 9 real numbers These 9 numbers 

will form the solution vector X. The measurements will consist of 6 real numbers 

y:^ = 'Pj(A') each showing the sum of a row or a column as shown in Fig. 2.1. 

Clearly, there can be an infinite number of solutions to this problem. If Xq is a 
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yj = 9 y ^ = 6  y j  =  3  

^ 4  =  3  

Ys =9 

y 6 = ̂  

Pj(x) = Yj = 9 = Xj+x^+x^ 

P2(x) = y2=6 = X2+X5+X3 

PjCx) = = 3 = Xj+Xg+Xj 

P/x) = y4= 3= Xj+X^+Xj 

P,(x) = y, = 9 = x^+Xj+Xg 

P6W = y6=6 = X,+Xg+X, 

Figure 2.1: What are the numbers in the box given the sums of the rows and columns 

^2 *3 

^4 

^7 
X, 
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solution then 

X = Aq + (2.1) 
i 

is alsô a solution where are the vectors spanning the null space and q's could take 

any value. Corresponding X^'s for this problem are given in Fig. 2.2. By definition, 

the result of forward operator on any vector in the null space is zero which can be 

verified easily by inspecting the vectors in Fig. 2.2. 

Vl{Xj) = Q ( = 1,6 i = l,4 (2.2) 

where the operator gives the sum of element on columns or rows [i = 1, • • • ,6 for 

3 rows and 3 columns). The dimension of the Null space is 4 which implies there are 

only five independent equations. This can be seen by realizing that sum of the three 

numbers corresponding to the sum of the columns or rows are sum of all numbers on 

the grid; hence given any five numbers the sixth can be found. 

To obtain a unique solution, we need to provide additional constraint on the 

solution. This can be done through optimizing a penalty functional defined as 

6 9 
6:= E + A E ,9(3;,) (2.3) 

i=l j=l 

where !?(•) is a distance measure and <?(•) is an additional constraint on the solution. 

Minimizing f('P^(A'), j/^) guarantees the fidelity to the measurements while 

optimizing ^(^j) helps narrow the solution set to one with a characteristic 

favored (biased) by the constraint. In the following sections, we discuss a few exam

ples for the function iS(-) (Minimum (Z^)^ norm, Minimum Support, and Maximum 

Entropy) and for each case provide the relevant solution. 
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-0.8 1.6 -0.8 2.6 -0.9 -1.6 

-1.4 -0.3 1.7 -1.8 0.6 1.2 

2.2 -1.3 -0.9 -0.7 0.3 0.4 

0.0 -1.1 1.1 0.0 -1.5 1.5 

-0.3 -1.0 1.3 -1.3 2.4 -1.1 

0.3 2.1 -2.4 1.3 -0.9 -0.4 

Figure 2.2: The vectors spanning the null space. 
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Minimum (Lo)^ Norm Solution 

Suppose vve know that the solution to our problem is the one with minimum 

sum of the squared (minimum (Z^)^ norm). Then a solution may be obtained which 

belongs to a subset of the set containing all plausible solutions. This solution may still 

not be unique (i.e., the subset defined by (Z^)^ norm constraint may have more than 

one member) . A solution with minimum (Z^)^ can be obtained through optimizing 

£ defined as 

6 o 2 

j=l j=l 

The minimization of £ ( x )  can be carried out using conjugate gradient or other 

similar gradient search algorithms. However, in this case, the minimum (Z^)^ norm 

solution is given by pseudo inverse solution to the problem AX = Y where A' is 

the solution vector and Y is the measurement vector and A is defined by mapping 

yi — The solution is given by 

X = {a'^A)-^A'^Y (2.5) 

It should be stressed that the added condition(s) on the solution may only be 

enough to reduce the number of plausible solutions. Such narrowing of the solution 

set has considerable advantage. If one considers two state of 1) lack of knowledge and 

2) unique identification of the solution as two extreme ends of a continuous scale, then 

in the absence of a unique solution, a smaller set of plausible solutions is preferred 

to a larger set of solutions. (Z^)^ norm is one example of many types constraints 

that can be used to more uniquely define a solution. In the following, we present 
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9 6 3 

2 1 0 

4 3 2 

3 2 1 

Figure 2.3: Minimum solution 
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the Minimum Support functional which is another type of constraint and has some 

interesting characteristics. 

Minimum Support 

In NDE applications where cracks and voids are the dominant expected source of 

signals, a minimum support approach might be ideal. To minimize support, we want 

to minimize the number of nonzero pixels, so, ideally, a penalty of 1 is associated to a 

nonzero pixel. In practice, due to noise and other reasons, pixel values may never be 

exactly zero. Hence, a pixel is not penalized if it is below a threshold e. This means 

the support penalty function is H{\x^ \ — e). In the present work, since a gradient 

approach for minimization of support is used, the Heaviside function is not suitable 

since it has a zero or an ill-defined gradient. Instead an approximate form of the 

Heaviside function is used which has well-behaved gradient. One such function is 

'2.61 

where x  is a pixel in the image, e is the noise threshold and 7 ]  is the steepness 

parameter of the function. It should be noted that as 7/ approaches infinity, 5(.'c) 

approaches a Heaviside function, (see Fig. 2.4). 

If the minimum norm functional is replaced by the minimum support 

functional in the Eq. (2.4), the solution obtained will be more compact. The reason 

for the compactness of the minimum support solution versus that of (Lo)" is due to 

constant penalty for large pixel values. This is in contrast with the increasingly large 

penalties for larger pixels in the (Z^)^ functional. 

In cases where there are many degrees of freedom in the solution due to missing 
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(a) (b) 

Figure 2.4: Minimum support: a) functional b) gradient of the functional, for dif
ferent values of e 

9 6 3 

0 0 3 

9 0 0 

0 6 0 

Figure 2.5: Minimum support solution 
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Upper Bound 
Penalty 
Threshold 

(b) 

Minimum 
Supporl 
Threshold 

(a) 

Figure 2.6: Minimum support: a) functional b) gradient of the functional, for dif
ferent values of e 

9 6 3 

3 0 0 

3 3 3 

3 3 0 

Figure 2.7: Minimum support solution with upper bound penalty = 3 
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data, minimum support functional may not strongly affect the high pixel values. In 

those cases, it may be necessary to complement the minimum support functional by 

another functional to constrain high pixels. An example of such a constraint seeks an 

upper bound for the pixel values by adding penalty for pixel values above a specified 

threshold x^j^. 

J^{x) = S{x-,eQ,r]Q) + (2.7) 

Function <S(.t; eQ,%o) is a special case of J^{x) for = oo. In cases with high degrees 

of freedom in the solution, this additional constraint only affects the high pixel values 

without increasing the support. In the case at hand, we do not have many degrees 

of freedom in the solution. Hence, the solution using this functional with = 3 

as shown in Fig. 2.7 has smaller peaks at the expense of increased support. This 

solution is not as compact as the minimum support solution since a threshold is set 

at x^f^ beyond which pixels are penalized heavily. Hence, support of the minimum 

support solution has increased accordingly to reach a balance for the new condition. 

All pixel in the solution are equal to 3 which is purely a coincidence, however, the 

fact that there is no pixel greater than 3 in due to the heavy penalty given to pixels 

greater than 3. Note that, by counting the nonzero pixels, the support has increased 

from 3 to 6 which is a result of the balance between the support and the penalty for 

pixel values greater than threshold To see how the solution is affected by the 

value of we reduced the threshold from 3 to 2. The solution for this case is given 

in Fig. 2.8. The support has further increased to 9 to balance the penalty due pixels 

with values greater than 2. 
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9 6 3 

2.7 1.3 -1.0 

3.5 2.8 2.7 

2.8 1.9 1.3 

Figure 2.8: Minimum support solution with upper bound penalty 
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Maximum Entropy Solution 

The maximum entropy function has been used extensively in many areas of image 

and signal processing to supplement incomplete data inversions. Various forms of the 

functional has been used in different application, however, most conventional form of 

the functional is given as 

e = |.t| log |a;/.7;g| (2.8) 

There have been many justifications for the use of the maximum entropy function 

from the aspect of information theory [11, 12]. In this work, however, we will view 

it only from a functional standpoint. The maximum entropy functional, unlike min

imum support functional, it is unbounded while it is not as rapidly growing as the 

[Lo)^ norm functional. The gradient of the maximum entropy functional is monoton-

icly increasing which is similar to the norm functional than minimum support 

function which has a gradient with extremum point. Qualitatively speaking, it be

haves in between the minimum support functional and {Lo)^ norm functional. 

The solution obtained using this functional is given in Fig. 2.10 using a small 

value for .X'Q. The solution has many pixels around 1 which is a bias of this functional 

for .TQ = 1 since for values of x between 0 and XQ there is a reward rather than a 

penal ty .  The funct ional  i s  zero  for  z  =  0 and x  =,xq  

Discussion 

It is clear that choice of an appropriate functional depends on the physical 

problem at hand. Among other commonly used functionals is maximum entropy 

functional that has been used extensively in many areas of signal and image process-
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(b) 

Figure 2.9: Maximum Entropy functional for different values of .eg 

3 

9 

6 

9 6 3 

1.5 1 .5 

4.5 3 1.5 

3 2 1 

Figure 2.10: Maximum Entropy solution with a small .tq 
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ing. The difference between Maximum Entropy and Minimum Support functional 

is mostly in their behavior for larger arguments. The maximum entropy functional 

in unbounded while minimum support functional is bounded by 1 as argument ap

proaches infinity. This is an important difference since it will pressure the large values 

in the solution downward. The minimum support functional, on the other hand, puts 

the greatest pressure on values in the transition region and leaves the higher values to 

adjust appropriately to minimize the inconsistency with the measurements. Conver

g e n c e  t o  a  s o l u t i o n  c a n  b e  s l o w  d u e  t o  s m a l l  g r a d i e n t s  i n  m o s t  r a n g e s  o f  p i x e l  v a l u e  x  

(As seen in Fig. 2.4). In Fig. 2.4, it is observed that as e varies for a fixed rj, the peak 

of the gradient shifts. To speed the convergence, one may start the iteration with 

a large value of e and gradually reduce it to the noise level. Numerous experiment 

have proved the effectiveness of this scheme. Results will be shown in the following 

chapters. 
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CHAPTER 3. FORWARD MODELLING OF ELASTODYNAMIC 

WAVE SCATTERING 

In this chapter, a two-dimensional elastic forward algorithm is presented that 

utilizes the integral form for the equation of motion in the isotropic elastic medium. 

This approach is most suitable for cases where scattering from a small inhomoge-

nous body in an otherwise homogeneous background is sought. In this chapter, the 

forward problem is solved by discretizing the integral equations. The results from 

the numerical implementation are compared with the series solution to the scattering 

from a cylinder. Furthermore, the results obtained from the exact nonlinear model 

will be compared with results from linearized model (Born approximation). Finally, 

the equations for the motion for the acoustic medium is derived as a special case of 

the elasticity problem. 

Introduction 

The work on the integral equation approach to elastic wave scattering is moti

vated by the need to have an algorithm which would yield far field scattering from 

an object with ka less than 10. Differential equation methods (e.g., finite element 

and finite difference methods) have been used successfully in the past to model wave 

phenomena [24]. However, differential equation methods method are not inherently 
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suitable for cases where field is sought at large distances. This is due to the fact that 

differential methods require global discretization and hence are not efficient for such 

purposes. Much work has been carried out in making-differential methods efficient 

in propagating the field in the homogenous medium beyond the scatterer itself (for 

example see [10]). Workers have proposed and implemented boundary matching tech

niques which utilizes the existing symmetry of the problem. In this work, we present 

a volume integral equation approach to solving the forward problem which will avoid 

the problems of boundary matching. The volume integral approach is optimum for 

cases where the scatterer is a small inhomogeneity in a homogeneous background. 

This method can be improved to efficiently handle the case of the homogeneous scat

terer too. For example, application of the divergence theorem reduce the volume 

integral equation to a boundary integral formulation. One can envision an improved 

volume integral method which it adjusts itself to efficiently solve the scattering prob

lem for a given scatterer. The adjustment can be regarded as choosing the best set 

of the basis functions to represent the field and the scatterer. One can show that 

the Boundary Element solution can be derived from a volume integral solution with 

appropriate basis functions. Further details on this topic is yet to be explored in the 

future. 

Wave Motion in Elastic Media 

The wave motion in a homogeneous isotropic elastic solid is governed by 

Tij^j + = 0 (3.1) 



www.manaraa.com

24 

where stress tensor Tjj is given by 

nj = + "j,i) (3.2) 

where A and /t are the material Lame constants and p is the mass density. The 

displacement u includes both shear (S-wave) and pressure wave (P-wave) motion. 

Generally, parameters p, A and /i are not constant; indicating the material is in-

homogenous. If the medium is homogeneous everywhere except for a finite region 

of space, then it is beneficial to represent p, A and p, as the sum of the constant 

background parameter and the variation due to the scatterer given as 

p ( x )  =  p Q - { - 6 p { x )  (3.3) 

A(.t) = AQ + 6A(z) (3.4) 

p { x )  = p Q - \ r 6 p { x )  (3.5) 

note that 8p^ 6\ and 8p are zero everywhere except for the scatterer. 

The general solution to Eq. (3.1) in the presence of an incident displacement 

field can be represented in terms of the Green's functions i/y?-(.T|.r') for the 
^ V 

background medium with elastic parameters /JQ, AQ and pQ. 

u { { x ' )  = u j ^ ^ { x ' )  + j u^j{ x \ x ' ) s j { x ) d x  (3.6) 

- s i ( x )  =  6 X { x ) u f . ^ i , ^ { x )  +  6 p { x ) i u i j j { x )  +  

Uj^n{x)) + 6p{x)uj^ui (3.7) 

^ - ̂') (3-8) 

The sj{xys are seen to be "equivalent source" functions. If displacement U{{x) is 

known, using Eq. (3.6), the scattered displacement can be calculated anywhere in 
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Transducer 

Inhomogene i ty 

Pulse-echo 

(Backscatter) 

Discretized region 

Figure 3.1: Forward scattering calculation from a small inhomogeneity 
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space. The displacement u^{x') can be obtained over the scatterer by solving the 

above equations. In order to solve for we proceed to discretize the above 

integral equations. One method of solving volume integral equations is to project the 

solution onto a discrete basis set. The choice of the basis function is very important 

in obtaining a physically sensible solution. As it will be discussed further, if only 

far-field displacements are desired, the choice of basis function is not as crucial as 

when we are interested in displacements close to discontinuity regions. In the case at 

hand where functions and its derivatives are to be defined, a basis function should 

be chosen that is differentiable at least up to the order needed in s. A basis function 

like Gaussian-Sinc function is infinitely differentiable 

6(.ti,.T2) = e~""^'^l"^"^2)sinc(-^-)Sinc(^^) (3.9) 

where a  is chosen such that it effectively limits the support of the basis function so as 

to limit the support of the numerical integration. The choice of Az depends on the 

spatial bandwidth that is required to represent the function. Note that b{x) behaves 

like a delta function as Ax—>0. 

= lim b { x ) A x E r f { - ^ )  (3.10) 
.r—>0 2a 

U j ^ { x '),6X{ x '),6fi{ x ' )  and 8 p { x ' )  may be expressed in terms of the basis functions as 

u ^ { x )  = - X I , )  (3.11) 
k  

6A(z^) = ^^8\{xj,)b{x' — x^,) (3.12) 
k  

8ii{x') = Y^6n{xj,)b{x' -xi^) (3.13) 
k  

-  x k )  (3.14) 
k  
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By combining Eqs. (3.6) and (3.14), the following linear system of equation is ob

tained. 

; 
or in matriz form 

AU = U^^^ (3.16) 

where are vectors containing displacement components (Greek symbols refer to 

position index and Roman symbols refer to component). ajQ,j^'s are defined as 

^iajf3 = -/n y;(3.17) 
k  

{^a,ya) and (.T^, ?/^) correspond to locations a and /? respectively, and is the 

Green function given by 

2 

X k f 4 i  ' r-

= = 7:%[%<(V)-34(V)] (3.19) 
V  /  

1 

f  

0 

^7^4(V) - kfHQikir)] (3.20) 

(3.21) 

and A^j's involve the products of bu and 6\ ,  S/ j , ,  and 6p.  These lengthy expressions 

are listed in the appendix. The above system of equations is solved either iteratively 

or by an exact inversion of matrix A. Matrix A is not a fully populated matrix and is 
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dominated by diagonal and subdiagonals. It is conceivable to avoid an exact inversion 

by exploiting the physics of the problem. In this work, we will not discuss techniques 

that can be applied and suffice to state that less interaction between the elements of 

the scatterer translates into a more diagonally dominant matrix. 

The initial algorithm developed in this work employed the Gaussian-Sinc basis. 

The Gaussian-Sinc function efficiently represent any bandlimited function. However, 

in choosing a basis set, one has to balance the representation efficiency with the 

computation efficiency. Choosing the most efficient basis set may not be the best in 

terms of overall computation burden. The most efficient basis set can represent the 

function using fewest components, however, it might require more computation in 

calculating coefficients represented in Eq. (3.17). By choosing an appropriate 

basis set, it is possible to considerably improve the overall computation speed. In a 

problem where many forward calculation is necessary, as it is the case for iterative 

inversion algorithms, using a basis set with minimum computation demand is im

perative. Hence, an alternative to Gaussian-Sinc basis function was chosen for the 

current algorithm to provide speed in forward modeling. The new approach assumes 

basis functions that yield finite difference formulation, hence, making it possible to 

evaluate integrals as a Rieman sum. A set of equations was obtained (see appendix 

for detail), as before, in terms of the unknown displacement field on the scatterer. 

Solution obtained from this model is compared with the series solution. It is ob

served that the result is as good as the previous solution which used Gaussian-Sinc 

basis functions. Due to computation efficiency, from here on, the alternative solution 

(using an implicit basis function) will be used. 

In the following section, we present some results obtained using the developed 
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Figure 3.2: An incident plane wave impinging on a cylindrical scatterer 

forward scattering model. 

Algorithm Verification 

The first step is to validate our forward model. To do this, the special case of 

scattering from a cylinder was considered. The solution for the scattering from a 

cylinder is available analytically in the form of a series solution because of separable 

geometry [27] (see appendix). 

In the following, we consider the case of scattering from a steel cylindrical scat

terer [p = 7850 kgfm^, = 5906 m/s and c( = 3230 m/s) in a Silicon-Nitride 

{p = 3250 kglrrfi^ C[ = 5906 m/s and = 3230 m/s) background. The scattering is 

due to a plane pressure wave incident on the cylinder as shown in Fig. 3.2. 
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Figure 3.3: Total back-scattered power from a steel cylindrical scatterer in Sili
con-Nitride with P-wave incidence: Comparison between the solutions 
from series method and the integral equation method for ka = 0.6 (e.g., 
a 30/i cross section at 20 Mhz) 

In Fig. 3.3 the total back-scattered power calculated with the integral equation 

method is compared with the solution obtained using the series method. The integral 

equation result was obtained using a 11 X 11 discretization of the cylinder. The series 

solution was obtained using 12 terms in the series. There is very good agreement 

between the two solution as shown in Fig. 3.3 . 

Now that we have verified the algorithm, we can use our forward algorithm 

to study other problems. For example, it is valuable to know how the scattering 

is affected by the sharpness of the transition boundary between the two medium. 

In Fig. 3.4a, the radial profile of three different rotationally symmetric scatterers 

are shown. The boundary of the scatterer in these scatterer varies from a sharp 
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boundary to a smooth Gaussian scatterer. The scattered power is plotted versus angle 

for ka = 0.6 for the case of steel scatterer in Silicon-Nitride as shown in Fig. 3.5a. 

The scattered power for this ka does not vary significantly from diffused boundary 

scatterer to the sharp boundary scatterer. However, by increasing ka the difference 

is more significant. The case of ka — 1.5 is shown in Fig. 3.5 ( a 11 x 11 discretization 

was used to represent the cylinder in integral equation approach and 12 terms was 

used in the series solution). 

Another interesting issue is testing how the exact nonlinear solution compares 

with the Born solution. Again the case of steel in Silicon-Nitride is considered. The 

backscattered power is plotted for series solution, nonlinear solution and the linearized 

Born solution. Figs. 3.6a, 3.6b, 3.6c, and 3.6d show the solutions for ka = 0.3,0.9, 

and 1.5 respectively. As the ka increases the accuracy of the Born result decreases. 

As seen in Fig. 3.5, where back-scattered power is shown for ka = 1.5, the difference 

between Born and exact solution is the largest ( a 11 x 11 discretization was used 

to represent the cylinder in integral equation approach and 12 terms was used in the 

series solution). 

It should be noted that the solution for the displacement can be used to calculate 

the induced voltage in a transducer. This is done using Auld's reciprocity theorem. 

Auld's reciprocity theorem (see appendix) states that given displacement and stress 

components U and T for a case where no flaw exists and U' and T' for a case where 

f l a w  e x i s t s ,  t h e  v o l t a g e  i n  t h e  t r a n s d u c e r  c a n  w r i t t e n  a s  

(3.22) 
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Position 

Figure 3.4: Profile of the scatterers ranging from sharp to smooth boundary 

Figure 3.5: Comparing backscattered power from cylindrical scatterers a) 
b a c k - s c a t t e r e d  p o w e r  f o r  k a  =  0 . 6 . b )  b a c k - s c a t t e r e d  p o w e r  f o r  k a  =  1 . 5  
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Figure 3.6: Comparing the series solution (grey) with the integral equation solu
tions with (solid)/without (dotted) Born approximation: a) ka = 0.6 b) 
ka = 0.9 c) ka — 1.2, and d) kd = 1.5 
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Reducing Elastic to Acoustic 

In the case of an elastic scatterer in an acoustic background, the solution can be 

represented by a scalar quantity 0 where u = V(j), since the displacement in acoustic 

medium is irrotational. However, it is more common to refer to pressure inside fluids; 

for this reason, in the following, we start from the elastic equations of motion and 

d e r i v e  t h e  e q u a t i o n  f o r  t h e  p r e s s u r e  p  =  — A V  •  u .  

~ 0 (3.23) 

hence 

i^jj + = 0 (3.24) 

knowing p  =  

P , k k  +  ( 3 . 2 5 )  

furthermore, if we assume ^ = 0, we obtain the Helmholtz equation for the pressure 

inside the fluid. Furthermore, by representing slowness 1/c^ = 1/c^ — 1/(5c^(.t), the 

volume integral equation becomes 

p ( x ' , u } )  =  p ^ ^ ^ { x \ u ) )  +  J v { x ^ ) p { x ' , u > ) G { x ' \ x ) d x ^  (3.26) 

where v { x )  =  l f 6 c j { x )  and G  is the Green function for equation 

v' ^ G [ x \ x ' )  +  k ^ G { x \ x ' )  =  8 { x  -  x ' ) .  (3.27) 

In many applications, it is desired to know the scattering from an elastic object 

immersed in an acoustic medium (e.g. water). Considering the fact that an ideal fluid 

can be assumed an elastic object with /i = 0, the approach to the problem becomes 

clear. However, one should proceed with caution since by setting /i = 0 we assume 
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a zero velocity of propagation for the shear component of the wave in the acoustic 

medium. The complexity is due to the fact that displacements can be discontinuous 

in directions tangent to the interface. Since the source function in Eq. (3.6) contains 

terms including derivatives of displacement makes the problem ill-posed in nature 

and could adversely effect the stability of the solution. In the following, two cases of 

scattering from an elastic scatterer in an acoustic medium and an acoustic scatterer 

in an elastic medium is considered. 

The case of an elastic scatterer in an acoustic medium is more interesting.and 

also is more commonly observed. Since the acoustic medium can not support shear 

displacement, at the boundary of the scatterer, the displacement tangent to the inter

face can be discontinuous. This discontinuity can introduce numerical instabilities. 

For the case of elastic scatterer in an acoustic medium, the scattered displacement 

can be written in terms of the Green's function for the acoustic background and the 

source function carries the information about the elastic scatterer. The approach to 

solving the problem follows that of scattering by elastic solid in an elastic medium. 

The Green's functions for displacement in which case can be derived as a special 

case from Eqs. (3.18),( 3.19), (3.20). 

(3.28) 

G'(.2(r) = (3.29) 
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2 
- A:^^o(A/r)] (3.30) 

(3.31) 

The voltage in the transducer can be represented in terms of the pressure field p  using 

Auld's reciprocity relationship given by 

s { x , u j )  =  j p { x '  , t j j ) p ^ ^ ^ { x '  , i j j ) v { x ' ) d x ' .  (3.32) 

The voltage s at different positions x  and different frequencies w can be used as the 

measurement for the inversion process. 
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CHAPTER 4. MINIMUM SUPPORT LINEARIZED ACOUSTIC 

INVERSION 

Introduction 

In this chapter, the linearization of the inversion problem is introduced. The lin

earized problem is the basis of common imaging techniques such as SAFT (Synthetic 

Aperture Focusing Technique) and diffraction tomography. The discussion that fol

lows only considers the acoustic problem to limit complexity, and keep conceptual 

focus on the issue of limited data inversion. 

Model For The Forward Problem 

Auld's reciprocity theorem states that the voltage in the transducer due to a 

scatterer is given by (see previous chapter and appendix for a detailed derivation) 

a(w) = (4-1) 
4/Ji J eg c(.-c)-

where w is the frequency, p  is the density of the scatterer and background, F is 

the incident power, CQ and c{x) are velocity of the background and the scatterer 

respectively, is the pressure when the scatterer is not present, and p{x) is 

the pressure when the scatterer is present. p(x) can be calculated from the following 
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Figure 4.1: Ultrasonic probing: volumetric image may be obtained using a 
two-dimensional scan 



www.manaraa.com

39 

x3=0 

/ j „ \ \ Far Field 

Figure 4.2: Incident field in the far-field 

integral equation. 

p { x ' )  =  +  w ^ / c Q  J p { x ) v { x ) G { x \ x ^ ) d x  (4.2) 

where G { x \ x ' )  is the Green function and v { x )  =  CqIc { x ) ^  —  1. The fact that p { x )  

depends on the scatterer makes Eq. (4.1) nonlinear with respect to the unknown 

v{x). Assume a weak scatterer where c"(x) % Cg + ec^(z) and p(z) « pQ(a;)-t-(.!•). 

Expanding Eq. (4.1) yields the linear integral equation for v{x) as the leading order 

writen as 

s{u}) = J^p^^^{x,oj)^v{x)dx (4.3) 

Given a transducer, incident field at any point in space can be represented as (see 

Fig. 4.2) 

/"'(.TI, X2, X3) = / «/TI, 
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where p{ki,k2) is called the spatial frequency spectrum of the transducer and is 

simply the spatial Fourier transform of the field p{x) at depth zg = 0. For large values 

of 0:3, incident field may be asymptotically evaluated in closed form (see appendix) 

given by 

(4.5) 

Hence, the output voltage of transducer located at a position (.t^,.1-9,0) is given by 

/ / 9 9 /" 9 
s(.T^,.X-2,U;) = 4:TT"k" J^p''{kxilr,kx2lr)v{xi,x2,x^) (4.6) 

where r = ^(z^ — .rj^)- + { x i ,  —  X 2 ) "  + 2'g. Assuming a point source transducer(i.e. 

p{kxi, kx2) = 1) at a distance r in the far field the voltage can be written as 

s { r n , u j )  =  C { u j , r ) v { 2 u } n / c )  (4.7) 

where C(w, r) is a complex constant. The exact expression for this constant can be 

known as shown in the next chapter. However, in practice it is determined by experi

ment and includes all temporal and spatial behavior of data collection system, where 

w is the frequency and n is the unit direction vector, f(z^,^2,zg) can be obtained 

exactly through a Fourier transform if v{2ion/c) is known for all w and directions. 

If the scatterer is real-valued, it can be reconstructed exactly using measurements 

on a hemisphere (27r radian coverage of k-space) because the other half is complex 

conjugate of the known half. Usually, due to finite temporal bandwidth and finite 

aperture, it is not possible to obtain a complete measurement set. As a consequence, 

the result of inversion is not unique and obtained solution depends on the algorithm 

which was used for the inversion. As discussed in Chapter II, most algorithms have 

implicit biases toward certain solutions. In the following sections, we utilize the in

version methods discussed in Chapter II. First results of inversion with minimum 
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support will be presented and it will be compared with the results from minimum 

{L2)^ norm inversion. In one case, a maximum entropy solution is also provided. 

A Two Dimensional Example 

In this section, we use a two dimensional example to demonstrate the effective

ness of the minimum support inversion. The forward scattering model for the two 

dimensional case is developed in Chapter III (for a detailed SAFT derivation see 

appendix). As shown in the previous section, the relationship between the voltages 

observed by the transducers and the scatterer potential can be 

written as 

v^{2u} /ccos6 ,2u j / c sm9)  =  s^{u ; ,6 )  (4.8) 

where s^ (uj,  9 )  the voltage at the output of the transducer and û'^(2w/ccos 0,2w/csin 0)  

is the Fourier transforms of the scatterer v{xi,x2)- For a given set of measurements 

v'^{2uj/ccos9,2u}fcs'mô) can be calculated. A solution may be obtained 

by evaluating the two dimensional Fourier Transform of v^{ki,k2)- For a finite 

temporal bandwidth and limited angular view, space {k]^,k2) is only partially known 

(see Fig. 4.3). As discussed earlier, the solution is not uniquely defined. By assum

ing zeros for regions in the t-space where measurement does not exist we obtain 

the minimum (^2)^ norm solution (see chapter 2). This a consequence of parseval's 

theorem. An (^^2)^ norm solution has many artifacts in the form of negative and 

positive peaks. Furthermore the (^2)^ norm solution is, almost always, unphysical 

because this solution is obtained by assuming zeros for the missing measurements 

which is rarely the case in practice. To understand the exact relationship between 

our obtained solution and the exact solution, let's define a function ip{ki,k2) such 
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View-Angle 

Measurements 

Measurement 
Bandwidth 

Figure 4.3: An example of data coverage in the 6-space using a limited-view-angle 
pulse-echo system 

that , A;2) = 1 for all {k^, k2) where a measurement is available and tk{ki, /rç) = 0 

otherwise. Using ^2) 

(4.9) 

or 

v"^{x i , x2 )  =  ip{x i , x2 )®v{x i , x2 )  (4.10) 

where 0 is the two-dimensional convolution operation. 

It is interesting to note that if Arg) = l—il>{ki, k2) then ̂ /'^(A;^, k2)i^{ki, A^g) 

0 So if we consider a vector ig) = {xi,x2) 0 g{xi,X2) then adding 
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g^{xi,x2) to v{xi,x2) does not change the measurements. This is because 

• tp{x i , x2 )  0 {v{x i , x2 )+9 j f ^ {x i , x2 ) )  = X2) ® X2) + 0 (4.11) 

This is a very useful result since now we can optimize the support functional <S(u) 

by correcting ^2) by 12) ® ^2) where ^2) is the gradient of 

the minimum support functional without worrying about the consistency with the 

measurement as that is preserved by definition. In the discretized form, the minimum 

support functional is written as 

l î  g  =  ® V5, then a new solution ^2) can be written as 

U/t+l(^i) = + i g ih j )  (4.13) 

where 7 is found by a line-minimization in the direction of vector g .  

Note that due to the nonuniformity of measurement sample location in the 

A;2) space, FFT can not be used for transformation between the A:-space and 

X — space. It is possible to use the discrete Fourier transform, however, it is not very 

efficient. Numerical implementation can be made more efficiently by using FFT if the 

sampled data is first resampled over a uniform grid. This can be done by resampling 

a new measurement function defined as 

® (4.14) 

This method was implemented, however, convergence was extremely slow and a so

lution could not be obtained. We believe a modified version of this technique can 
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be used successfully to yield inversions with great efficiency. The results which are 

presented in this chapter are obtained by gradient search using unfiltered gradients. 

In other word, we allow some discrepency between measurements and the solution in 

the optimization process. 

The Support Minimized Inversion 

A minimum support inversion is obtained by minimizing the penalty function £ 

defined as 

g = + (4.15) 

i  3  

where di is the measurement obtained through the forward model, is the 

measurement, and xj is the j^|^ pixel and S{xj) is the minimum support functional 

as defined in the previous section. 

The choice of measurement is important in reduction of unnecessary com

putation. Instead of choosing time-domain signal as the measurement, it is compu

tationally more efficient to reduce all available time-signals by taking s{x^,t) into a 

uniform grid of s{k). This will significantly reduce the number of measurements with

out throwing away any important information. The main reason for the reduction is 

the fact that time signals have a non-uniform density of information in the t-plane. 

This is evident by transforming the time signals collected at all direction into the 

t-plane. It is seen that near zero spatial frequency there is a cluster of data while as 

k  i n c r e a s e s  d a t a  p o i n t s  a r e  l o c a t e d  m o r e  s p a r s e l y .  A s s u m i n g  a  s i z e  c o n s t r a i n t  o f  A x  

is placed on the object, A;-space data spaced more closely than 1/Ax is redundant 

information, as dictated by the sampling theorem. By resampling data on a uniform 

grid with spacing 1/Az, the redundancy can be eliminated. When noise is present. 
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the resampling performs an averaging of data which improves the signal to noise 

ratio. • 

In the following, two sets of results are presented. For the first case, a crescen t  •  

shape object is considered and inversion is presented using limited bandwidth and 

limited-view-angle data. In the second case a square scatterer is considered and 

results are presented for limited bandwidth and limited view-angle using minimum 

support functional with a maximum ceiling constraint. 

Fig. 4.4 shows the true scatterer which is in the shape of a crescent. The (Lo)^ 

norm so lu t ion  i s  shown in  F ig .  4 .5a  us ing  a  150  degree  v iew-ang le  and  I  <  ka  <  Q.  

Fig. 4.5b shows the minimum support solution. By comparing the two image, it is 

clear that the minimum support solution is much closer to the original object than 

the [Lo)^ solution. The artifacts in the form of negative and positive side-lobes 

and blurriness of the norm solution is expected based on our experience from 

results discussed in chapter II. In fact, by reducing the amount of available data we 

should observe a steady degradation of the (^,2)^ norm solution. This is because the 

(Z,2)^ norm assumes zero for unmeasured regions of A;-space which is highly unlikely 

in the case of a "real-world" scatterer. The minimum support functional on the 

other hand tries to extrapolate the unknown measurements such that the scatterer 

has the smallest volume (compact support). Results shown in Figs. 4.5a, Figs. 4.5b, 

Figs. 4.6a, and 4.6b clearly demonstrate this point. 

The objective of the second experiment is to see the effects of minimum support 

functional on the solution. The scatterer is a square as shown in Fig. 4.7a and 

simulated data was generated for a 90 degree view-angle and I < ka < Q. The 

(L2)^ norm solution is shown in Fig. 4.7b. The result is blurred and there are strong 
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negative side-lobes in the solution. In Fig. 4.8a, the minimum support solution with 

no amplitude constraint is presented. The support is considerably smaller than that 

of the (Z'2)^ norm solution. As it was discussed in chapter II, minimum support 

functional does not influence high pixel values, hence making it possible for high 

pixel value to take any value as long as they are consistent with the measurements. 

In cases where data is severely limited, as it is for the case at hand, the degree of 

the freedom for high pixel values is relatively high. This makes it desirable to define 

an additional constraint for high pixel values. An example of such functional is the 

minimum support functional with a maximum amplitude penalty. This functional 

was introduced in chapter II and its behavior was studied. Figs. 4.8b, 4.9a, and 

(4.9b) show results of inversion using parameters = 1.1,1.0.0.5 respectively. It 

is seen from these results that by bringing the threshold lower the high pixel 

values decrease without any change in measurement error or the support until the 

goes below what was the actual peak in the scatterer. For the case of x^f^ = 0.5 

the support starts to increase so as to reduce the penalty for the high pixel values. It 

should be noted that as approaches e the solution will approach the {Lo)^ norm 

solution. 

Finally, we conclude this section by presenting the maximum entropy solution to 

the problem of the box scatterer with 90 degree view-angle and limited \ < ka < 6. 

Fig. 4.10a shows a maximum entropy inversion of the box with entropy function 

defined as 

S{xi) = xilog\xi\ (4.16) 

The solution resembles that of the {L^)^ norm solution. The negative side-lobes 

and blurrieness which is characteristic of (^2)^ norm solutions is present in the mem 
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Figure 4.4: Case 1: Original object (min=0.0, max=1.0) 

result. This is expected from our previous argument in Chapter II stating that mem 

solution behaves much like (^2)^ norm solution while being closer to the minimum 

support solution. Sometimes mem is used in combination with positivity constraints. 

Fig. 4.10b shows this solution which was obtained by optimizing mem function with 

additional quadratic penalty for negative pixels. This solution is practically (to the 

specified tolerance) is all positive. Although this solution is closer to the original 

scatterer, it is still blurred due to the high penalty for high pixels. We conclude this 

chapter, by restating that in the abscence of any a priori information all of the above 

solutions are equally valid, however, if one is searching for the most compact object, 

then support minimized inversion provides the best solution. 
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(b) 

Figure 4.5: Inversion resuit using 150 degree view-angle and bandwidth 1 < A:a < 6 
a) using (I'2)^ norm (min=-0.26 max= 0.95 ) and b) using the minimum 
support functional (min=0.0 max= 1.0 ) 
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(b) 

Figure 4.6: Inversion result using 120 degree view-angle and bandwidth I  <  k a  <  6  

a) using norm (min=-0.29 max= 0.86 ) b) using the minimum 
support functional (min=0.0 max= 1.0 ) 
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(b) 

Figure 4.7: Case a) Original scatterer (min =0.0, max = 1.0), b) {L2)^ norm re
construction of the scatterer using 90 degree view-angle and bandwidth 
1 < A:a < 6 (min= -0.37, max = 0.54) 
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(b) 

Figure 4.8: Inversion resuit using 90 degree view-angle and bandwidth 1 < A:a < 6 
with the minimum support functional: a) with no amplitude constraint 
( min=0.0, max= 2.0), b) with amplitude constraint at = 1.1 
(min=0.0, max=1.12) 
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«mm 

(b) 

Figure 4.9: Inversion result using 90 degree view-angle and bandwidth 1 < fca < 6 
with the minimum support functional: a) with amplitude constraint 
at = 1.0 (min=0.0, max=1.0) b) with amplitude constraint at 

= 0.5 (min=0.0, max=0.87) 
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(a) 

(b) 

Figure 4.10: Inversion result using 90 degree view-angle and bandwidth 1 < fca < 6 
a) using maximum entropy functional (min=-0.34 max= 1.12) b) using 
the minimum support functional (min=G.O max= 1.24 ) 



www.manaraa.com

54 

CHAPTER 5. SUPPORT MINIMIZED NONLINEAR ACOUSTIC 

INVERSION WITHOUT ABSOLUTE PHASE 

Introduction 

In this chapter, the application of support minimization to non-linear inversion 

of incomplete acoustic scattering data is presented. Similar to the inversion scheme 

in the previous chapter, the inversion scheme presented here utilizes a variational 

approach based on repeated application of a forward scattering algorithm. However, 

the forward scattering algorithm is not linearized. Even when a more explicit means 

for expressing the inverse mapping is available, the need to appropriately constrain 

the underdetermined incomplete data inversion will remain unchanged. Since opti

mization of the employed non-linear functionals requires an iterative procedure, the 

repeated application of the forward scattering algorithm does not present a signifi

cant increase in algorithm complexity. Indeed, the support minimization and implicit 

inverse mapping are carried out simultaneously by treating agreement with the mea

sured data as an additional a priori condition to be optimized. 

The problem considered here is the two-dimensional acoustic backscatter prob

lem for which a broadband pulse with a plane wavefront insonifies a scattering object, 

and scattering data is collected at a large distance in the backscatter direction (i.e., 

in the direction of the source of the incident pulse). In the examples shown here, 
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the data to be inverted is limited in both collection angle and temporal frequency 

bandwidth. The measurement space in this example is the (^, w) plane, where 9 is 

the observation (and incidence) angle and w is time-harmonic frequency. The object 

space is the (z2,.r2) spatial coordinate plane. The forward mapping in this problem 

maps the scattering object onto the scattered field measured at a large distance. 

Forward Model 

The scattering problem is governed by 

( f> ix ' , i j )  +  Ïcq ( t ) {x ,u>)g{x ) ( l ) ^ {x \ x ' , u j )dx  = ( f ) ^ ' " - ^ {x ' , u )  (5.1) 

where <^^"^(1, w)  represents the incident pulse as a function of position x, and tempo

ral frequency w, (f){x, w) represents the total wavefield in the medium (incident plus 

scattered pulse), and = w/cg is the wavenumber of the host medium having con

stant acoustic velocity CQ. It is assumed that the scattering object is contained within 

a closed volume V, in which the acoustic velocity c{x) is a non-constant function of 

x. The scattering object g{x) is defined as 

pw = 
= (5.2) 

kQ 

The Green function ( f ) ^ {x \ x ' , u>)  is written 

( l>^{x \x ' , u j )  =  -  cc ' l )  (5.3) 
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where is the zero order Hankel function of the first kind. In this work, an incident 

plane wave pulse is assumed, written 

(5.4) 

where n{6)  is a unit vector pointing in the direction of incidence. Eq. (5.1) can be 

interpreted as a second kind integral equation for the total wavefield (f){x,uj) when 

x' G V . The measured data is received at a large fixed distance r outside V in the 

backscatter direction —n{0). The measured data is therefore represented by rewriting 

Eq. (5.1) as 

d{0 ,u>)  =  =  —kQ ( f ) {x , ( j j )g{x )<f ) ^{x \  -  rn[9) ,u ) )dx  (5.5) 

The forward mapping in this problem maps the scattering object g{x )  onto the mea

sured data d{0^u!). This is performed computationally by first solving Eq. (5.1) as 

an integral equation for the total wavefield (j){x,u)) over V for a given incident field 

(/)^^^(x,cij) and scatterer g{x)^ then evaluating Eq. (5.5) to determine the data d{0,u!) 

at the measurement positions. The forward mapping is seen to depend linearly on 

the incident field (j)^^^{x,u), but non-linearly on the scattering object g{x), since the 

total field (f){x,uj) obviously depends on g{x). The desired inverse mapping is likewise 

non-linear. 

Due to the non-linearity of the problem, it is difficult to state a  pr ior i  what 

constitutes a complete set of measured data. However, insight into this question is 

provided by the examination of the linearized approximation of the inverse mapping 

(Born inversion) [33, 8] (a similar result is obtained independently in Chapter IV). 

Using the far-field approximation of the Green function 

<lP{x \ rn{e ) ,u j )  % C(w,r)e-'^Oa;'»(^) (5.6) 
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Figure 5.1: Acoustic back-scatter measurement. 
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.3/2 
C(w,r) = ^e%tor+«A;o,r/4 (5.7) 

yvrr 

in Eq. (5.5), the measured data is expressed 

4)^'^{-rn{e),u}) % C(w,r) J $ikQn{0) - '),^)g{,l)d'y (5.8) 

where ^ and g  are the spatial Fourier transforms of 0 and g .  The inversion is linearized 

by neglecting the scattered field contribution to th e total wavefield, in which case 

(j) — Using the incident field of Eq. (5.4), the Born inversion is expressed 

4>^^{ - rn{0) ,u j )  % C{uj , r )g{2u j f cQn{0) )  (5.9) 

In examining Eq. (5.9), a number of conclusions regarding data completeness 

are evident for the linearized inversion. The scattering object g{x) is assumed fre

quency independent in the examples considered in this presentation. Conditions for 

data completeness for backscatter measurements from a frequency independent scat-

terer are summarized as follows; 1.) A one-to-one mapping is obtained (i.e., all of 

A;-space is covered) when backscattered data is available in all directions of obser

vation/incidence, and at all temporal frequencies. 2.) If the scattering object is 

restricted to a real valued function (i.e. g{k) has Hermitian symmetry about the 

origin), then a complete data set requires backscatter measurements covering only 

180 degrees, and at all temporal frequencies. 3.) If the object is bandlimited in 

spatial frequency, the object can be reconstructed from finite temporal frequency 

bandwidth data. 4.) The maximum spatial dimension of the object will determine 

the required temporal frequency sample spacing. 5.) Likewise, the angular sample 

spacing depends on angular frequency bandwidth of the object. An important ques

tion concerns how these facts change when the inversion becomes non-linear. Note 
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that in the non-linear case, the support of the total field ^ is no longer infinitesimal. 

Consequently, a given region of the measuremeat space is sensitive to values of é 

within a correspondingly larger region of the object Â;-space, via the convolution of 

Eq. (5.8). 

In NDE practice, interest is often in the reconstruction of compact, discontinu

ous flaws using limited aperture, limited temporal frequency bandwidth backscatter 

data. The ultrasonic signals measured from such objects contain far less high spatial 

frequency information than is needed to sharply define the object boundary. Like

wise, low frequency information required to define the gross shape and homogeneity 

of the scatterer is often insufficiently available. The following examples show how 

inversion errors due to such data deficiencies are compensated through the use of 

support minimization. 

Inversion 

The mechanics of the inversion scheme and the incorporation of support mini

mization are now summarized. The measured data at discrete points 9^, w,; in the d,u) 

plane are denoted To proceed with the problem discretization, the scattering 

object is represented as a discrete sum 

9{x) = Y,9jVj{x), (5.10) 
j  

where v j { x )  are suitably chosen basis functions. Likewise, the total scattered field at 

discrete frequency Wj is written in terms of a basis bn{x,0J{) as 

( l ) {x ,u i i )  =  Y l ( j )n ibn{x ,u i ) .  
n  

(5.11) 
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A frequency dependent basis is desirable for representing the wavefield, since spatial 

frequency bandwidth requirements of the basis scale directly with temporal frequency. 

Using eqs. 5.10 and 5.11, discrete forms of Eqs. (5.3) and (5.5) are written 

~ ^mi (5.12) 
n  j  

^im ~ ^^^nidj^rnnji (5.1.3) 
n  j  

Gmnji = ^0 jy^n{x,uJi)vj{x)<iP{xlxm,^^i)dx (5.14) 

^mnji = kl j^bn{x,ui)vj{x)(iP{x\-rn{6m),'^i)dx (5.15) 

where = bn{xm,^i)- Equations (5.12) and (5.13) state the discrete mapping 

b e t w e e n  t h e  d a t a  a n d  t h e  o b j e c t  g j .  

The inversion proceeds through the optimization of a functional in the form of 

6: = / (5.16) 

where T is the forward mapping from object to measurements, V is the measure 

of distance (in this work V is (Z/g)^), and S is the minimum support functional 

a s  d e f i n e d  i n  c h a p t e r  2 .  T h e  p r o c e s s  i s  i n i t i a t e d  w i t h  a n  a p p r o x i m a t i o n  o f  t h e  g j  

(e.g. gj = 0). Approximate scattered data are evaluated through solution of 

the forward scattering problem. The functional and its gradient, are then evaluated, 

the gj are appropriately updated, and the process is repeated. A conjugate gradient 

optimization algorithm was employed in the work reported here. 

The forward scattering problem requires the inversion of a set of linear equations 

in the total field (j) 

~ .(5.17) 
n  
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^^mni ~ ^mni (5.18) 
j  

The computational bottleneck in the inversion process is the inversion of Eq. (5.17). 

An explicit inversion of the matrix can be avoided by exploiting special properties 

of this matrix, such as the convolutional nature of the Green function. Additionally, 

it is not necessary to obtain an exact solution to Eq. (5.17) at every step of the 

solution, since the scattering object is itself an approximation during most of the 

procedure. Thus efficient means of approximately up-dating the scattering matrix 

can be employed. 

Optimization of a functional as expressed by Eq. (5.16) requires taking the gradi

ents of Eqs. (5.12), (5.13) with respect to the discrete object variables gj^. Eq. (5.16) 

is expressed in discrete form as 

N =  EPj  +  EQi  (5.19) 
j  i  

where 

The partials in the second term of Eq. (5.21) are obtained by solving the following 

system, derived by differentiation of Eq. (5.12) 

E ̂  = KiSkOmnki (=-22) 
n  "9k  n  

Note that one matrix inversion serves to solve both Eq. (5.18) and Eq. (5.22). In 

practice, however, it was observed that the increase in computation time resulting 



www.manaraa.com

62 

from calculation of the second term in the right hand side of Eq. (5.21) far exceeds the 

increase in computation due to the error in the gradient when this term is ignored. 

The first examples shown are inversions using the available measured data with 

no additional functional measures applied other than agreement with the measured 

data. The local measures applied to the measured data and reconstructed object, 

Eq.{33), are specified as 

Qt = (5.23) 

P j  =  0 (5.24) 

' (5.25) 

In the above equations, the index k denotes discrete measurement positions in the 

9 — (jj plane. The choice of weight function Wf, significantly impacts the rate of 

convergence. An effective weighting was found to be 

' ^ k  
1/2 

(5.27) 

This weighting applies a filtering similar to that applied in a Born inversion. Indeed, it 

is noted that, with this weighting, the gradient vector bears considerable resemblance 

to the Born solution. Other measures of agreement with the measured data may 

be more appropriate under different circumstances, particularly in the presence of 

noise [42]. 
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Results 

Results are presented for two different scattering objects depicted in Figs.(5.2a) 

and (5.3a). The first object is a square inclusion with a discontinuous boundary 

and a velocity which is 30% slower than that of the background medium. This 

represents the most appropriate type of object for support minimization. The second 

object consists of two humps representing 30% and 25% reductions in velocity, and 

a neighboring dip representing a 80% increase in velocity. This object demonstrates 

the effect of support minimization when the object boundary is continuously varying, 

rather than discontinuous. 

The scatterers of Figs.(5.2a) and (5.3a) are first reconstructed using a 180 de

gree backscatter aperture, and a relatively broad spectral bandwidth. The measured 

backscattered data is specified in 10 degree increments. For the object of Fig.(5.2a), 

six frequencies are equally spaced over a frequency bandwidth of 1.13 < ka < 6.78. 

where k is the wavenumber in the background medium and a is the approximate 

radius of the circle circumscribing the object. For the object of Fig.(5.3a), ten fre

quencies are equally spaced over a frequency bandwidth of and 0.8 < ka < 8.0. 

The inversion is initiated by setting the = 0. The reconstructions obtained using 

the measured data only (i.e. no support minimization or other penalties other than 

agreement with the measured data) are shown in Figs.(5.2b) and (5.3b). The recon

struction performance is better in Fig.(5.3b) than Fig.(5.2b) The reason for this is 

effectively illustrated in Fig.(5.4), which compares the spatial frequency amplitude 

spectra of the true and reconstructed objects in the direction. The true object 

of Fig.(5.2) is seen to have a substantially broader bandwidth than that of Fig.(5.3). 

Good agreement is seen over the entire object bandwidth for the object of Fig.(5.3). 
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Figure 5.2: Acoustic case 1: a) true scatterer potential v{x )  b) reconstruction using 
6 frequency and 19 measurement position over 180 degree, c) reconstruc
tion using 6 frequency and 19 measurement position over 180 degree with 
minimum support. 
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(a) (b) 

Figure 5.3: Acoustic case 2: a) true scatterer potential u(a:), b) reconstruction using 
10 frequency and 19 measurement position over 180 degree. 

Considerable disagreement between the true object and the reconstruction is evident 

at high frequencies for the object of Fig.(5.2). The spatial frequency bandwidth cov

ered in the linear (Born) approximation by the measured data temporal frequency 

bandwidth is also indicated in Fig.(5.4). It is interesting to note that, in both cases, 

agreement between the true and reconstructed objects extends beyond the bandwidth 

limit imposed by the measured data under the linear approximation. This observation 

suggests that the conditions for completeness of data under the linear approximation 

may be a conservative estimate of those for the non-linear inversion. An interesting 

speculation is that this is the result of the convolution in Eq. (5.8), which increases 

the "domain of influence" in the mapping between object and measurement spaces. 

Support minimization is now applied to the reconstruction of the object in 

Fig.(5.2). Eq. (5.24) is modified to 

+ (5.28) 

The gradient calculation is in turn appropriately modified. The parameter 7 in 
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Figure 5.4: Spatial frequency domain profile for: a) acoustic scatterer of case 1, b) 
acoustic scatterer of case 2. 
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(c) (f) 

Figure 5.5: Acoustic reconstruction of scatterer in case 1: a) with 3 frequency and 
19 measurements positions over 180 degree, b) with 3 frequency and 
13 measurements positions over 120 degree, c) with 3 frequency and 10 
measurement positions over 90 degree, d,e, and f are the above with 
minimum support functional minimized. 
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Figure 5.6: Acoustic reconstruction of scatterer in case 2: a) with 3 frequency and 
19 measurements positions over 180 degree, b) with 3 frequency and 
13 measurements positions over 120 degree, c) with 3 frequency and 10 
measurement positions over 90 degree, d,e, and f are the above with 
minimum support functional minimized. 
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(a) 

(c) 

Figure 5.7: Acoustic reconstruction of scatterer in case 1 using: a) 6 frequency and 
10 measurement positions over 90 degree, b) 6 frequency and 10 mea
surement positions over 90 degree with minimum support constraint, c) 
6 frequency and 10 measurement positions over 90 degree with minimum 
support constraint and a quadratic penalty function for large pixels with 

3ub ~ 
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Eq. (5.28) balances the contributions of the P  and Q  operators to the optimized 

penalty. The threshold e is set at 5% of the maximum magnitude of gj and the 

parameter 7] is set to 4. The improvement resulting from support minimization is 

seen in Fig.(5.2c). This improvement is reflected in the improved agreement in the 

spatial frequency amplitude spectra, also plotted in Fig.(5.4a). Note the similarity 

between this result and spectral extrapolation methods based on causality constraints 

in time domain signal analysis. [28] 

Reconstruction's of more severely limited data sets are now examined. In the 

following examples, the temporal spectral information is limited to three equi-spaced 

frequencies covering 1.13 < ka < 3.39 for the object of Fig.(5.2) and 0.8 < ka < 2.4 

for the object of Fig.(5.3). Results for backscattered apertures of ISO, 120, and 90 

degrees are shown. The angular measurement spacing is is kept at 10 degrees. The 

inversions were initiated with gf^ = 0. Inversions using the incomplete measured data 

alone (no support minimization) are shown in Figs.(5.5a,b,c) and Figs.(5.6a,b,c) for 

the objects of Fig.(5.2) and Fig.(5.3), respectively. The results of the application of 

support minimization are shown in Figs.(5.5d,e,f) and Figs.(5.6d,e,f). The angular 

apertures in these results are a,d) 180 degrees, b,e) 120 degrees, and c,f) 90 degrees. 

The reconstruction without support minimization are obviously severely affected by 

the reduction in data. A sharper definition of the objects is readily apparent following 

the application of support minimization. The performance of support minimization 

in reconstructing an object which does not have discontinuous boundaries is demon

strated in Figs.(5.6d,e,f). The amplitudes of the three humps are reconstructed well, 

but the boundaries of the object are noticeably more compact than the true object. 

In this case, the algorithm has found an object consistent with the measured data 
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which has a support less than that of the true object. In Fig.(5.5d), the support 

of the square, discontinuous boundary is reconstructed quite well, and a reasonably 

good representation of the object amplitude is obtained. As the backscatter aperture 

is decreased, the sharp corners of the object support are seen to become rounded. In 

the most extreme example, Fig.(5.5f), using 3 frequencies and a 90 degree aperture, 

the corners of the true object support appear completely rounded, and the amplitude 

of the reconstruction is significantly in error. 

Absolute Phase Error Correction 

A significant problem in the practical implementation of any inversion scheme 

is the assignment of an absolute phase reference (i.e. a "zero-of-time") to individ

ual measurements. This is particularly true in ultrasonic backscatter measurements 

where a single probe is mechanically (perhaps even manually) positioned at various 

angular orientations. Accurate inversion of the data requires knowing the probe po

sition to within a small fraction of a wavelength, which, in practice, is not realistic 

to expect. 

This lack of absolute phase information is compensated for in our approach by 

treating the "zero-of-time" associated with each measurement as variables in the vari

ational optimization of the support functional. In practice, recorded signals scattered 

from a flaw under different angular orientations are aligned visually to roughly cor

respond to a common origin within the component. Following this visual alignment, 

the remaining uncertainty in probe position will likely be within a few wavelengths 

or less. Corrections for the uncertainties in probe position are denoted corre

sponding to the uncertainty in the radial distance from the probe to the flaw at the 
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Transducer 

Rubber 

Bands 

Cross 
Section 

Figure 5.8: Experiment set-up: Back-scattered signal measured from two rubber 
band each 1mm thick using a 500A'/i3 transducer. 

measurement position. The associated phase correction is incorporated into the 

functional 0{v,d) as 

OM = + E l^ml'/d-ml' + £') (5.29) 
i  j  ^  

The dj's are treated as additional unknown variables, and are included in the total 

unknown vector along with the unknown variables v^. After optimization is complete, 

the value of rfj indicates how much correction was applied to the measurement 

position. 

In order to test the robustness of the proposed algorithm, an experiment was set 

up as shown in Figs. (5.8), (5.9) and (5.10). In this experiment a series of time signals 

were collected at finite number of angular positions. The objective of the experiment 

is to reconstruct the scatterer without an absolute knowledge of the zero-of-time. 

The only additional a priori information about the object is an assumed compact-
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Figure 5.9: Pulse-echo time signals were collected at 19 angles over a 180 degree 
view angle. 
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Figure 5.10: Time signals are digitized and Fourier transformed: inversion algorithm 
uses spectral components in the band-pass of the system. 
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Figure 5.11: Some of collected Pulse-echo time signals. 
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0.05--

0.0 

0.5 - -
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Figure 5.12; Results of inversion for scatter potential v  using experimental data: 
a) without the minimum support functional and absolute phase cor
rections, b) with the minimum support functional and absolute phase 
corrections. 

ness. A total of 19 measurements were made uniformly spaced in a 180 degree view 

angle. Following visual alignment, the time signals were Fourier transformed and 

deconvolved to remove the receiver response. Spectral values at a finite number of 

frequencies around the 500 khz operating frequency were selected as input data to the 

inversion algorithm. Results presented here utilized 6 frequency components equally 

spaced in the 250 to 650 khz range. As seen in Fig. (5.12a), the reconstruction of the 

object without support minimization or absolute measurememt phase is not in agree

ment with the true scatterer geometry. Artifacts in Fig. (5.12a) indicate a far larger 

scatterer than actually exists. In Fig. (5.12b) the result of inversion with support 
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minimization and absolute phase error correction is presented. The reconstruction 

artifacts have been removed. The separation of the two objects is in agreement with 

the actual separation. The amplitude of the scattering potential likely does not truly 

represent the rubber band because the variable velocity Helmholtz equation does not 

accurately represent scattering from rubber in water. In Fig. (5.13), correction val

ues for the position of the transducer at each measurement position are given. These 

corrections are the side product of the phase corrected inversion with minimum sup

port. Note that corrections to the nominal distance dQ are almost symmetric about 

the middle transducer at 0 degrees. This is expected since the object is symmetric 

about the 0 degree axis in Fig. (5.12). The visual alignment of the waveforms resulted 

in an approximately symmetric initial phase error. 

Conclusion 

A robust algorithm is presented for nonlinear acoustic inversion using acoustic 

backscatter data limited in both spatial and temporal frequency domains. This algo

rithm produces a more accurate and intelligible result when applied to scattering data 

for which an a priori assumed compactness is justified. The algorithm compensates 

for incompleteness in the measured data through the minimization of a functional 

measure of object support. Examples of application to simulated backscatter mea

surements demonstrated the effectiveness in reconstructing severely limited data. A 

scheme for compensating for unknown absolute measurement phases was introduced. 

This scheme variationally determines the zero-of-time associated with each measure

ment position as part of the support minimization procedure. Application of this 

algorithm to experimental back scatter data yielded excellent reconstruction of the 
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Figure 5.13: Phase corrections at center frequency of 500 khz (0q = 360(/(/AQ). 

scatterer geometry assuming no known zero-of-time data. Work is currently under 

way to extend the algorithm to elastic media. 
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CHAPTER 6. SUPPORT MINIMIZED NONLINEAR ELASTIC 

INVERSION 

Introduction 

NDE of structural components is primarily concerned with inversion of elastic 

wave scattering in solidâ. Similar problem has been addressed by workers in the 

geophysical context [7, 26, 25]. There are many similarities between NDE and geo

physical applications. In the NDE applications, the object of interest containing the 

possible flaw is probed through an acoustic medium. This is done either by immers

ing the object in a fluid tank or by adding couplant fluid between transducer and the 

object. Likewise in the geophysical application, the object of interest might be under 

a body of water (oceanography). The backscattered wave can be detected either at 

the receiver position (pulse-echo mode) or at other locations by another transducer 

(pitch-catch mode). The time signals can be captured using a finite bandwidth re

ceiver. The collected time signals carry information about the interface of the elastic 

solid and fluid in addition to the possible flaw information. In this chapter, we will 

not discuss how the fluid-solid interface is handled and will assume that scattered 

data in available somewhere inside the solid under test. There are many similarities 

between the acoustic inversion and the elastic inversion. In both cases, a forward 

model is used to simulate the measurements and the inversion is carried out using a 
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optimization approach. However, there are very significant differences in the physics 

involved. The main difference is the existence of two types of wave propagating with 

different velocities. Even when the incident wave is purely of one type, the scattered 

wave is almost always (except for a few unusual situations) of both types. 

In the following, the forward elastic model is briefly restated. Next, a measure of 

fidelity to the measured data is defined and its gradients are derived. Finally, results 

are presented for the inversion of an elastic scatterer inside another known elastic 

solid using finite bandwidth data. 

Forward Elastic Model 

The wave motion in a homogeneous isotropic elastic solid is governed by 

T^j^j pJ^ui — Q (6.1) 

where stress tensor r^j is 

nj = k + + uj^i) (6.2) 

where A and f i  are the Lame's constants and p  is the density. A repeated index 

convention is used; i.e. summation over the repeated index is implicit. Displacement 

U includes both shear (S-wave) and pressure wave (P-wave). The general solution to 

Eq. (6.1) in the presence of an incident displacement field can be represented 

in terms of the Green's functions u^Ax\x^) for the background medium with elastic 
2. J 

parameters /JQ, AQ and fiQ. 

u^{x') = + j u^j{x\x' ) s j {x)dx. (6.3) 
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where 

- s ^ ( x )  =  S À ( x ) t i f . ^ j ^ . ^ ( x )  +  S / i ( x ) ( u j j j ( x ) +  (.6.4) 

(6.0) 

The displacement u^(x^) can be obtained by solving the above equations. In order to 

solve for ui{x')i we proceed to discretize the above integral equations. For the work 

that follows, the discretization is based on a simple finite difference scheme that was 

proven accurate and efficient in Chapter III. 

Inversion Algorithm 

The material parameters are found by a variational inversion of the scattered 

data as discussed in the previous chapters. Generally, a function £{j) 

= y /:(uh)) (6.7) 

where 7 represents the material parameters to be solved for and u { - )  is the scattered 

field which depends on 7. £ is a functional representing the distance between mea

sured and calculated scattered field. In this work, functional C is chosen to be a 

(^2)^ functional defined as 

/:(«) = g (6.8) 
i 

In this work, the inversion uses the displacements due to the p-type back-scattered 

portion of the scattered wave. Although in practice it is possible to obtain both P 

and S components of the scattered wave, it is not convenient. In fact, if we show we 
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can provide inversion with one type of back-scattered wave, surely, it is possible to 

provide a solution using both components. 

5(7) should be optimized with respect to 7. This-can be done numerically using 

the gradient information of £. First, the gradients of £ with respect to 7 are found. 

The gradients are derived in the appendix. 

To see how this inversion scheme performs, a test case is considered. The test 

involves inversion of an elastic scatterer in an homogeneous elastic background given 

the backscattered field at many temporal frequencies and angular positions. The 

number of measurements required for the inversion is not clearly understood for the 

non-linear inversion problem. However, we can estimate the values for Aw and AO 

by inspection of the time signal at the observation point. Aw should be chosen such 

that the observed time signal is uniquely defined. In other words, Aw < ^ where 

T is the maximum length of the time signal among all signals measured. However, 

this condition for Aw is a conservative estimate and in some cases this might not be 

necessary. For example, when there is resonance behavior, it might not be necessary 

to choose Aw = 1/T. Instead, one might find Aw from the early portion of the signal. 

In other words, discard component of the signal that is due to resonance. This topic 

is still under study and definite anwers may be known in the future. 

Inversion Examples 

To test the inversion algorithm, the case of scattering from steel impurities in 

Silicon-Nitride is considered. It is assumed that all the parameters vary as 

A(X) = U(A;)(AI -  AQ) + AQ 

y.{x) = v{x){iii - hq) + HQ 

(6.D) 

(6.10) 
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p{x) = v{x){pi - pq) + PQ. (6.11) 

Hence, the inversion involves finding v{x). The assumption that all three parameters 

A, p. and p vary in the same way is not true in general. However, this is a reasonable 

assumption as a starting point to a full inversion. Due to the nonlinearity of the 

problem, it is not clear how much information is needed to obtain an exact inversion. 

Furthermore, it is not known to what degree the existence of local minima pose 

a problem in inversion. Due to high dimensionality the solution space it is very 

difficult to develop any intuitive picture of the penalty functional space. However, 

we can examine the penalty functional space on a one or two dimensional subspaces. 

For example, for a given scatterer DQ, we can calculate penalty functional 5'(U(A)) 

where v{X) is defined as 

u(A) = UQ + A(uo - vi) (6.12) 

is an arbitrary point chosen in the object space. By varying A we can traverse the 

distance between uq and uj. Figs. 6.1a and 6.2b show two such plots for two cases 1) 

is all zero and 2) is all one. Each curve on the plot is the value of the penalty 

function on the line for one frequency. Figs. 6.2 shows the total penalty function for 

Figs. 6.1. From these plots, it is clear that by using few frequency, especially, when 

low frequency information is missing, there are many local minima. In our example, 

by increasing the number of frequencies the local minima disappeared. The weighting 

(or filtering) in the frequency domain plays an important role in removing the local 

minima. The optimum filter and means of obtaining such filters for each case are to 

be explored in the future. 

In the first example, a Gaussian shape scatterer which is shown in Fig. (6.3) is 

reconstructed using scattered field at finite number of angles and frequencies. The 
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ka=4.5 

ka=3.0 

ka=2.4 

ka=0.3 

(a) (b) 

Figure 6.1: Curves showing the value of the penalty function versus A for few fre
quencies: a) marching on a line from u = 0 to u = , b) marching on 
a line from u = 1 to u = uq 
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Total error marching from 
v=0 to solution 

Total error marching from 
v=l to solution 

Figure 6.2: Comparing the total penalty function for the two cases. 
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reason for choosing Gaussian lie in the physical process the introduces the impurities. 

The impurity is introduced during the process of grinding the Silicon-Nitride with 

steel ball-bearings. Later, when Silicon-Nitride is heated to produce ceramic, the steel 

particles melt and diffuse in the background. This suggests it is reasonable to model 

the impurity with a Gaussian potential. The first case is with a 180 degree view angle 

and 0.1 < ka < 1.5. The result of inversion without the minimum support is given 

in Fig. (6.4). The quality of inversion is acceptable and there are not many artifacts. 

After applying the minimum support the result is shown in Fig. 6.4a. The support 

has reduced slightly and there are not significant differences in the two result. Next, 

Inversion results are given for 150 and 120 degree view-angles respectively. The results 

of inversion without minimum support shows typical norm solution behavior 

although due to nonlinearity we do not know how close the solution without minimum 

support is to the norm solution. After applying the minimum support in both 

cases the object's support has reduced significantly and is much closer to the true 

object. In fact, the support is slightly smaller than the true object. In this case, 

there is sufficient spectral information and the incompleteness is due to the limited 

view-angle. 

In the next case, measurements are provided over a 180 degree view-angle with 

ka range of 0.7 < ka < 6.0. The reconstruction using these measurements clearly 

shows in Fig. 6.8a that there was not sufficient spectral information available and 

even with a 180 degree view-angle the inversion is not very good. The minimized 

support inversion extrapolated the spectral information accurately to provide a com

pact solution shown in Fig. 6.8b. 
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Figure 6.3: Original scatterer; Steel scatterer in Silicon-Nitride. 

(a) (b) 

Figure 6.4: Inversion of a steel scatterer in Silicon-Nitride background using 180 
degree view angle and 0.1 < ka <1.5 (e.g. for a 30fi radius particle 
3 Mhz < / < 50 Mhz): a) without minimum support, b) with the 
minimum support 
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(a) (b) 

Figure 6.5: Inversion of a steel scatterer in Silicon-Nitride background using 150 
degree view angle and 0.1 < ka <1.5 (e.g. for a 30/u radius particle 
3 Mhz < / < 50 Mhz): a) without minimum support b) with the 
minimum support 

(a) (b) 

Figure 6.6; Inversion of a steel scatterer in Silicon-Nitride background using 120 
degree view angle and 0.1 < ka <1.5 (e.g. for a 30/i radius particle 
3 Mhz < / < 50 Mhz): a) without minimum support b) with the 
minimum support 
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Figure 6.7: Original scatterer for case of steel in Silicon-Nitride 
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(a) (b) 

Figure 6.8: Inversion of a steel scatterer in Silicon-Nitride background using 180 
degree view-angle and 0.7 < ka < 6 (e.g. for a 30/i radius particle 20 
Mhz < / < 200 Mhz): a) without using minimum support, b) with 
using minimum support 
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Conclusion 

An exact nonlinear elastic inversion of backscattered field was presented. Inver

sion results using a minimum support functional was compared with inversion results 

without the use of minimum support. Generally, when it is a priori known that 

scatterers are compact, the minimum support constraint can effectively reduce the 

artifact and ripples that are created due to missing data. In other words, the mini

mum support constraints helps fill the missing data in such a way that the resulting 

scatterer has the smallest volume (as defined by the minimum support functional). 

This technique is very suitable for NDE inversion of flaws such as cracks and voids 

where the compactness a priori assumption holds. 
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APPENDIX A. GREEN'S FUNCTION DERIVATION 

The displacement Green's functions for the infinite elastic medium with Lame 

parameters A,// and p satisfy the following equation. 

where 

T^j  =  (A.2) 

By replacing in Eq. (A.l) with Eq. (A.2) we obtain 

9 r r , 
{puj-^ + + (A + + ((A + n))"2:1 = ^(.7; - x ) (A.3) 

{pu^ + + (A + + ((A + f i )  )"hl = S{x-x ' ){AA)  

assuming a space harmonic form for displacement u Eq. (A.4) transforms into an 

algabraic equation which can be solved to yield 

âii(i-i.'ï) = - iTiir'+ iJT^' 

Hence the displacement Green function can be obtained by taking the two-dimensional 

Fourier transform of the ^2) ^12(^1; ̂ 2)-
9 

"11(3:1,3:2) = - ̂0(^1'')) - (A.7) 
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9 Zç 
- HQ{krpr)) )  + -

^L^l i^L^)) )  (A.8) 

"12(^1'^'2) = - 7 w 2  { -  H ^ i k j ^ r ) )  -  ( A . 9 )  

( A . I O )  

Due to the symmetery, — "2l(^'l''^2) "22(-'^l'-^2) be obtained 

from ^^22(^1'^2) by interchanging indecies 1 and 2. 
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APPENDIX B. DISCRETIZATION OF THE INTEGRAL EQUATION 

The wave motion in a homogenuous isotropic elastic solid is governed by 

= 0 (B.l) 

where stress tensor T^j is 

T^j  =  k  + n{ui^ j  + uj^ i )  (B.'2) 

where A and are the Lame's constants and p is the density. Displacement U 

includes both shear (S-wave) and pressure wave (P-wave). Generally, parameters p, 

A and p, are not constant; indicating the material is inhomogenous. If the medium is 

homogenuous everywhere except for a finite region of space, then it is beneficial to 

represent p, A and p as 

P  = P Q + P i ^ )  (B.3) 

A = AO + A(Z) (B.4) 

p = pQ+p{x)  (B.5) 

The general solution to Eq. (B.l) at presence of an incident displacement field 

can be represented in terms of the Green's functions Gi.j{x\x') for the background 

medium with elastic parameters /9Q, AQ and pQ. 

Uj( . ' r ' )  =  + j  G ^ . j{x\x ' ) s j{x)dx .  (B.6) 
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The displacement Uj(a:') can be obtained by solving the above equations. In order 

to solve for we proceed to discretize the above integral equations. The choice 

of the basis function is very important in obtaining a physically sensible solution. 

As it will be discussed further, if only far-field displacements are desired, the choice 

of basis function is not as crucial as when we are interested in displacements close 

to the discontinuity regions. In the case at hand where functions and its derivatives 

are to be defined, a basis function should be chosen that is differentiable at least up 

to the order needed. Some basis functions like Gaussian-Sinc functions are infinitely 

differentiable 

b{x)  = e-°^-^^Sinc(^) (B.7) 

where a is chosen such that it effectively limits the support of the basis function so 

the numerical integration can be carried out over a finite support. The choice of 

Ax depends on the bandwith that is required. u^{x^),X{x'),/j.(x^) and p{x^) may be 

expressed in terms of the basis function b{x) as 

-  ̂k )  (B.8) 
k  

H^ ' )  = -  ̂k)  (B.9) 
k  

~  ̂ k )  
k  

Pi^ ' )  = -^k)  (B.ll) 
k  

By combining Eqs. (B.6) and (B.ll), the following linear system of equation is ob

tained. 

(B12) 
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E4''4 + «f4 = (B.13) 
A; 

where and are vectors containing first and second displacement components. 

i l  
a^j^'s are defined as 

Gj.2{xm,yn\x,y)A2i{x,y]Xp,yq) (B.14) 

where G^.j is the Green function given by 

.2 
.  -  kjH( ,{k ,r )]  (B.15) 

G'uiir) = aiiir) = - ̂ 4lk,r)] (B.16) 

2 

2 

(B.18) 

and Aj^j is given by 

p+np q+nq 
Ai i{x ,y ,xp ,yq)  = -  I] 

m=p—npn=q—nq 

[{H^m,yn) + ̂ IJ-{xm-,yn))b\x  — xp)h '  [x  — Xn)b{y — yq)b{y — yn) + 
{ H x m ,yn) +  ' 2 K ^ m , y n ) ) b " i x  -  x p ) b { x  -  X n ) b{y - yq) b{y - yn) + 
K x m , y n ) b { x  -  x p ) b { x  -  X n ) b '{y - yq) b '{y - yn) + 
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K^m,  yn)b{^  -  xp)b{x  -  xn)b"{y  -  yq)b{y  -  yn)  + 

(B.19) 

p+np q+nq 
AI2{X,Y,XP,YQ) = -  ^ (B.20) 

m=p—np n=q—nq 

[>^{xm,yn)b{x  -  xp)b '{x  -  xn)b '{y  -  yq)h{y  -  yn) + 
{ \{xmi  yn)  +  ̂ {xm^ yn))b '  {x  — xp)b{x  — Xn)b '{y  — yq)b{y  — yn) + 
Kxm,yn)b '{x  -  xp)b{x  -  xn)b{y  -  yq)b '{y  -  yn)  (B.21) 

p+np q+nq 

^2ii^ yq) = - S S 
m=p—np n=q—nq 

[Kxm-,yn)b '{x  -  xp)b{x  -  xn)b{y  -  yq)b '{y  -  yn)  + 

(A(a:m,yn) + l i {xm- ,yn))b '{x  -  xp)b{x  -  Xn)b '{y  -  yq)b{y  -  yn) + 
f i ixm,  yn)b{x  -  xp)b '{x  -  Xn)b '{y  -  yq)b{y  -  yn) (B.22) 

p+np q+nq 
A22{x ,y ,xp,yq) = - ^ ^ 

m=p—np n=q—nq 

[(A(a;m, yn)  + 2f j . {xm,yn))b{x  -  xp)b{x  -  xn)b '{y - yq)b '{y  -  yn) + 
iHxm,yn) +  2 ^ { x n i , y n ) ) b { x  -  x p ) b { x  -  X n ) b " { y  -  y q ) b { y  -  yn) + 
H { ^ m , y n ) b '{x -  x p ) b ' { x  -  x n ) b i y  -  y q ) b [ y  -  yn) + 
lJ ' {xm,yn)b"{x  -  xp)b{x  -  xn)b[y  -  yq)b{y  -  yn)  + 

i^^pixm,  y n ) b{x  -  xp ) b{x  - X n ) b { y  -  y q ) b { y  - yn)] (B.23) 
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APPENDIX C. DISCRETIZATION OF THE INTEGRAL 

EQUATION (ALTERNATE METHOD) 

In order to find the displacements on the scatterer, the field equations need to 

be discretized. The discretized equations yield a system of equations for the 2 X N 

displacement components. These equations can be written as 

(c.i) 

where 

I ]  I Z  l ^ ^ { h j ; P , q ) G i i { p - k  +  i , q - l  +  j )  +  

Y 1  I ]  P , -  6  +  t , g  -  /  +  ; )  ( C . 2 )  
i=—1 1 

A i 2 { p , < ? ; / , A : )  =  l ^ ' ^ ( h j \ P , Q ) G u i p - k  +  i , q - l  +  j )  +  

i = - l j = ~ l  

I ]  I ]  ' y " ' ^ { h j \ P , < l ) G i 2 { p - k  +  i , q - l  +  j )  (C.3) 
î'=-ii=-i 

(C.4) 

A2i ip ,q- , l ,k )  = XI S 7^^(z,;;P,9)G2i(p- + z,?- / + ;) + 
i=—1 j=—1 
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1 1 
£ Ê 7" (z,;;p,g)G22(p-^+ »,?-/ + ;) (C.5) 

i=—lj=—1 

/l22(P,9;^,^) = ^(p,g),(W + 

1 1 _ 
£ ZI 7 (^,;;p,9)G2i(p-^ -/ + ;) + 

i=—lj=—l 

Z Z P, 9)G22(P - 6 + z, g - / + ;) (C.6) 
z=—1 j=—1 

where 7^-^ 's are defined as 

7^^(i,j;/,A;) = 

( / ,&)  =  ( -1 ,0 )  =  - K ( i , j )  +  0 : 2 5 { K { i  +  l J ) - K i i - l , j ) )  

{ l , k )  =  { l , 0 )  =  - K { i , j ) - 0 . 2 5 { K { i  +  l , j ) - K { i - l J ) )  

( l , k )  =  { 0 , - 1 )  =  - f i { i , j )  +  0 . 2 5 { f i { i j +  l ) - f i { i , j - l ) )  

( / ,&)  =  (0 ,1 )  =  +  

( / , t )  =  ( - l , - l )  =  -0 .25{X{i , j )  +  f i{ i , j ) )  

(/,&) = (1,1) = -0.25(A(t,;) + X̂ ,;)) 

(/,&) = (-1,1) = Q.25{X{iJ)  +  Khj) )  

(/, Â:) = (1,-1) = 0.25(A(i,i) +/t(i,i)) 

( / , t )  =  (0 , - l )  = 0.25(A(z' + l,i)-A(i-l,i)) 

( / ,&)  =  (0 ,1 )  = -0.25(A(z + l,i)-A(z-l,i)) 

( / ,&)  =  ( -1 ,0 )  = 0.25(/x(i,i + l)-Mî,i-l)) 
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(/,&) = (1,0) = -0:25{f i i iJ  + l ) - f i { iJ- l ) )  

{ l , k )  =  { 0 , 0 )  =  +  2 K { i , j )  -  p { i J ) u j ' ^ A x ' ^  

( / ,&)  =  ( -1 ,0 )  =  - f i { i , j )  +  0 . 2 5 { f i { i  +  l , j ) - ^ t { i - l , j ) )  

( / , / : )  =  (1 ,0 )  =  — 

{ l , k )  =  ( 0 , - 1 )  =  — K { i , j )  +  0 . 2 5 { K { i , j  +  l )  —  K { i , j  —  l ) )  

(/, A;) = (0,1) = —K(j, j) — 0.25(/{(i, j + 1) — «(i, j — 1)) 

( / ,&)  =  ( -1 , -1 )  =  -0:25{Xi iJ)  + 

(/,A;) = (1,1) = -0.25(A(%,;) + X^,;)) 

( / ,&)  =  ( -1 ,1 )  = 0.25(A(i,i) + M(i,i)) 

( / , t )  =  ( l , - l )  =  0 . 2 5 ( A ( ; , ; )  +  X * , ; ) )  

(/,&) = (0,-1) = 0.25(X2 + 1,;)-X%-1,;)) 

( / , k )  =  ( 0 , l )  =  - 0 . 2 5 ( / / ( e  +  l , i ) - M 2 - l , ; ) )  

( / , ^ )  =  ( 1 , 0 )  =  — 0 . 2 5 ( A ( i , j  +  1 )  —  A ( 2 ,  j  —  1 ) )  

( / ,A)  =  ( -1 ,0 )  = 0.25(A(z,i + l)-A(î,i-l)) 
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APPENDIX D. SERIES SOLUTION TO SCATTERING FROM A 

CYLINDER 

The scattering from an elastic cylinder in an elastic background is a special case 

for which an exact solution may be found. The solution can be found in Pao and 

Mow [27]. The solution is expressed in the form of an infinite series. 

Since we only consider a 2-D in plane motion the displacement u can be expressed 

as 

u  =  V ( f )  +  V  X  i p z -  (D.l) 

Both (f) and ?/> satisfy the Helmholtz equation. Due to circular symmetery, we start 

with the Helmholtz equation in the cylendrical coordinates. 

solution to the above Helmholtz equation for the field outside of the cylinder can be 

written as 

(D.3) 
—oo 

and 

/l(r,g)=^cmym(A:rX^ (04) 
—oo 

for the solution of the field inside the cylinder, where Hm{kr)  and Jm{kr)  are the 

mfh order Hankel and Bessel functions. For each order there 4 unknown coeffecients 
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in the final solution. Two coefficients for P-vvave and S-wave inside the cylinder and 

two for outside solution. These unknowns can be obtained through satisfying the 

following boundary conditions 

(D.5) 

( D . 6 )  

(D.7) 

( D . 8 )  

For each order m, the following four equations are solved to obtain the coefficients. 

I  I I  
Ur = Uf 

I  I I  
UQ = UQ 

T 
Tj .  — r,. 

I  =  ^9 

im 

—Hm{kpa)^  c f f i  — 

Jmikp^a)^Cf f l  + klhm{ki^a)^Cfr l  = (D.IO) 

h J  

a ^  

+{^^imk[H'm{kia)  - ̂^imHm{kia  
a a"  

-((A^^ -f •2n^^)k j ,^ ' ' Jm{kj ,^a  

a a" 

-(——imkPJ^{ks^a)  -  imJm{ki^a 
a  

— {^^^ i^ '^^mkl j^{kga)  — ^^^ i^ '^^mJmikla)  
Û a" 

Pri  

Srr l  

Pnl l  Ur 

f i  

'm 

Sr l l  

(D.ll) 
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+{—ks" H' j^{ksa)  + — ^Hmikla))^  c f^  
a  a^  

a" a 

—i^i—kl"J^{kga) 7)Jm{kla) + -—Jm{f^s^)) (0.12) 
a" a 
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APPENDIX E. PARALLEL COMPUTATION 

An exact calculation of the forward scattered field requires considerable amount 

of computer time even for a very modest size scatterer. Parallel computers can 

be utilized effectively in the forward scattering calculation. There are two general 

category of parallel computers; 1) Single Instruction Multiple Data (SIMD) and 2) 

Multiple Instruction Multiple Data (MIMD). 

In MIMD machines different processors can carry out different task on different 

data simultaneously. This type of machines are useful in "coarse grain" parallelization 

where large independent segments of the code run in parallel. In SIMD machines, on 

the other hand, the processors carry out the same operation on different data, hence, 

making "fine grain" parallelization possible. Generally, SIMD machines are more 

suited to our application. Operations like matrix multiplication, addition and inver

sion which are the major operations in the forward calculation, can be parallelized 

very easily and efficiently on a SIMD machine. In fact in our parallelized forward 

scattering code, most of the time was saved in the parallel matrix inversion and 

multiplication and summation. Our code was written for a 16000 processor M as Par 

(MPI) parallel computer. 

The main difficulty in programming a SIMD parallel computer is the memory 

management and data distribution. Since each processor has a small memory size 
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(about 4 Kbyte), usually, it is not possible to store all of the data on all processors. 

Hence data should be distributed between all processors. However, if data is not 

distributed efficiently between processors, the amount of communication time needed 

to swap information could severely reduce the speed. 

Optimum performance can be achieved by minimizing the interaction between 

the processors and also the interaction between the parallel machine and the host 

machine (ALU). 
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APPENDIX F. GRADIENT CALCULATION 

In this section the gradients of the displacement with respect to the v { x j )  is 

derived. To avoid any unnecessary complexity, we will derive the gradient of 

with respect to v{xj). It is clear that the derivation of gradients of «9'^^ follow 

analogous to that of . 

Since we are interested in the discrete form of the gradient for numerical imple-

rnentation, the discrete representation of the integral which results in is used. 

i  j  

( F . l )  

where 

a i ( * )  =  - \ l ( " l , l + " 2 , 2 ) - ^ ( " l , l l + " 2 , 2 i ) - 2 ^ , 1 " 1 , 1 -

/^,2("1,2 + "2,1) - + "1,22 + «2,12) - (F.2) 

so the gradient can be written as 

^ J  

(F.3) 
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The assumption is made that A, f i  and p  can be represented as 

A(z) = (A^ - Ao)u(.-r) + Aq = ^Au(a;) + AQ (F.4) 

H { x )  =  ( / i l  - + / i Q  =  ( F . 5 )  

p { x )  = { p i - pq)v{x) +p Q  = 8 p v { x ) - \ - p Q  (F.6) 

Using the above equations, the gradients of with respect to vmn can be written 

as 

( J m n  

-{^[(«1,1  l , n )  -

/^A[(«iji + «2,12)('"'")G(m,n)] + 

— l,n) - + l,n)] + 

Y[(«l,2 + «2,l)('"'""^)G(m,n-l)-

("1,2 + + 1)]] + 

<5/^[(2ui,ll + "1,22 + "2,12)^^'"^<^("^' ")] + 

pur'u^''^G{m,n)] (F.7) 

By expanding all terms and rearranging them above can be written as 

2 ^ ^ Aii f^^{ l ,k \m,n)ui{m + l ,n  + k)  + 
i  j  l=-2k=-2 

1 1 Y1 Ai2o(^{l,k-,m,n)u2{m + l,n +k) 
/= —1 A:= —1 

^ ^ A2ic/3i l ,k - ,m,n)ui{m + l ,n  + k)  + 
i  j  /=_U=-1 
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2 2 
Y 1  D i422a^(/,A:;m,n)u2(m + /,n + /;)(F.8) 

/=—2 k=—2 

where 

(/, fc) = (0,0) = —Spuj^Ax^G^p{Tn,n)-

")  + + Ij  "• )  -  n))  -

~ 1' ") + + 1, ra) + 

G^^(m, n - 1) + n + 1) - 24G(m, n)) 

(/,fc) = (-2,0) = —GQ^(m - l,n) +-£GQ,^(m - l,n) 

(/, t) = (2,0) = —GQ,^(m + l,n) +-£^0,^(771 + l,n) 

(/,fc) = (0,-2) = ^GQ^(m,n-l) 

(/,/:) = (0,2) = ^G^^(m,n + 1) 

(/,fc) = (-l,0) = -(<5A + 25/ti)GQ,^(m,n) 

(/, Â:) = (1,0) = -{6\  + 28f i )G^^{m,n)  

(/, fc) = (0,-1) = -6fxG^^{m,n) 

{ l ,k)  = (0,1)  = -6f i )G^^{m,n)  (F.9) 

and 

^12ai3(''^;"^'") = 

(/,Â;) = (-1,-1) = ^{G^p{m-l,n)-G^i^{m,n)) + 

j {Ga^{m,n-  1)  -  G^l^ im,n))  

{ l ,k )  = = ——{G^i^(m-l ,n)-G^p{m,n)) -
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« + 1) - Gocp{rn, n)) 

(/,Â:) = (+1,-1) = —^(GQ,^(m + l,n) - GQ,^(m,n))-

4 (^a/0('"' « - 1) - <^ck:^("^' ")) 

(/,fc) = (+1,+1) = 

4 ((^a;9('^i » 4-1) — G()!^('^, ^)) (F.IO) 

^22a,9(^' t;m,n) = 

(/,  fc) = (0,0) = —6pL0^Ax^G^^{m,n)  — 

-^(G'O!^("^) n - 1) + G^^{m,n + 1) — SG^j^im,n)) — 

"^(2^û:^("^' " — 1) + ra + 1) + 

G(^^(m - 1, n) + G(^^{m + 1,n) - 24G(m, n)) 

(/, Â;) = (0,-2) = - 1) + - 1) 

(/,A:) = (0,2) = ^G(^^(m, n + 1) + y G^^(m, M + 1) 

(/,Â:) = (-2,0) = ^G^p{m-l,n) 

(/,/;) = (2,0) = ^GQ,^(m + l,n) 

(/, A:) = (0,-1) = -(i5A + 2^/i)G^^(m,n) 

(/,&) = (0,1) = -(6A + 2<5/z)G^^(m,n) 

(/, A:) = (-1,0) = -6^ iG^p{m,n)  

(/,/;) = (1,0) = -6n)G^p{m,n) (F.ll) 

and 

^12a^(''^;'^'") = 
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{l,k) = (-1,-1) 

(/,&) = (-1,4-1) 

{ l , k )  = (+1 , -1 )  

{l,k) = (4-1,+ 1) 

and the rest are zero. 

- 1) - GQ,^(m,n)) 4-

j (^ 'q :^("Ï  -  1)")  -  Gf^^{m,n))  

—~ 1) -  -

^(GQ,^(m 4-1,  n)  -  n))  

—4'(^of;0('"'" + ~ -

4 " )  -  n))  

^(G'a^("î,n 4-1) - G^j^{m,n)) 4-

f ~ (F.12) 
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APPENDIX G. ASYMPTOTIC EVALUATION OF INCIDENT 

FIELD 

Field due to a transducer at any depth X3 can be written as 

« X 1 , X 2 )  =  / ( 0 . 1 )  

where ^2) is termed the angular spectrum of the transducer. For large .T3, the 

above integral can be evaluated asymptotically through a saddle point evaluation. 

( j>{xi ,x2)  =  J  dk2Jh^2 J  (G.2) 

where aj = x i j x - ^  and k p  = k "  —  k ^ .  The stationary point can be found by setting 

d{kiai + ^kp — k'^)/dki = 0 (G.3) 

which results in k^ = aikpf{l + a^). Knowing 

J - 0 0  J - 0 0  V  - z f " { x ^ )  

^2) may be written as 

2 T r  k p  j x ^ ( k o a o + J l + a ( \ / k - - f c . j  )  

/

A 

^{aikp/{ l  +aî;),Â:2) 
^3(1 +«l)^/^ 

(G.5) 

Following the same steps for the evaluation of this integral, we obtain 

(l){xi,x2) = ^{kxilr,kx2lr)'^^^^^^^e^^^ (G.6) 

where the saddle point is located at {ki,k2) = (kxi/r, kx2/r). 
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APPENDIX H. CALCULATION OF THE VOLTAGE USING THE 

RECIPROCITY THEOREM 

The voltage induced in a transducer due to a incident field generated by the same 

t ransducer  is  ca lcula ted  in  th is  sec t ion.  Let ' s  assume we have access  to  ref lec ted  E 

and H fields in the cable connected to the transducers for two separate cases of 

flaw and no-flaw situations. E and H are the electric and magnetic fields for the 

no-flaw case, and E' and H' correspond to the case with flaw existing. Using the 

electromechanical reciprocity theorem and conservation of power, 

V • [ iu jU • t '  -  iu)U'  -T  -  E-  h '  + e '  • H)  = Q. (H.l) 

where U is the displacement and T is the stress. Assuming F and F^ are the reflection 

coefficients for the two cases of no-flaw and flaw respectively, 

E = i l  + r)E+ (H.2) 

H = {l-r)H+ (H.3) 

E'  = (l-fF')£;+ (H.4) 

H' = (1 + (H.5) 

where and are the input electric and magnetic fields. 

Utilizing the above equations, H.l can be written as 

j v - { U - T ' - U ' -  T )dv = 2(F - F') J {E+ x H+) • nds (H.6) 
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Knowing x H"^)  • nds  = —'2P and 5r = F — F' 

8V =  ̂  j  V -{U -T '  -U'  • T)dv  

Further limiting the equation of the motion to that of the ideal fluid, 

As a special case where p = p' ,  the above relationship simplifies to 

where p = uj^  i s  the pressure in the fluid. 
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APPENDIX I. RELATIONSHIP BETWEEN VOLTAGE AND THE 

SCATTERER POTENTIAL 

In this section, the results from the reciprocity theorem are used to derive a 

linearized acoustic inversion. Voltage induced in a transducer in the pulse-echo mode 

is given by 

3(/,w) = A(w) (1.1) 

where R{ui)  is the frequency response of the transducer, p is the pressure, and 

Ui is the component of displacement when no flaw is present. All components 

superscripted with ' correspond to the case with the flaw. Assuming p = p', the 

voltage can be written as 

s{x',u) )  =  R{u>) j  v{x)p{x,uj)p'{x,Lû)dx (1 .2)  

where v{x) = uj^(1/cq — l/c(z)^). Simplifying further, by applying the Born approx

imation p = p' 1 voltage s is written as 

s{x J v{x)p^x' — x,uj)^dx (1 .3)  

Next we express p{x) as 

p{x) = J (1 .4)  
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Using the steepest descent evaluation of the above integral for large X 2 ,  p { x )  may be 

written as 

p(;r,w) = (i.5) 
\ j  j rc  r  

By substituting the Eq. (1.5) in Eq. (1.3) we obtain 

2 
s(a;]^,u;) = —27rA;j J -^e^^^^v{xi,x2)dxidx2 (1.6) 

Above integral is in the convolutional form with respect to variable where v{xi,x2) 

is convolved with W(a;^, 12) defined as 

W(.'ri,.T2) = — (!•") 

where r = + x^ .  Taking the spatial Fourier transform with respect to will 

result in 

s(k i ,u>)  = —27rj  j  W{ki^x2)v{ki ,x2)dx2 (1.8) 

where 
2 j2uirIc  .  

W{ki,X2)== J e--?^'l^l (1.9) 

W(A;2,Z9) may be evaluated using the method of steepest descent for large X2 re

sulting in 

V ^2 

Substituting Eq. (I.IO) in Eq. (1.8) results in 

_ 1.2)3/4y 

(1.11) 
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Finally, the voltage is expressed in terms of the spatial Fourier transform of the 

scatterer potential as 

s{ki,u)) = —4^7™ - k^) (1.12) 
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APPENDIX J. FOCUSING OF AN ARRAY OF TRANSDUCERS 

In many applications it is desired to image interior of a solid through measurem-

nets taken with transducers immersed in water. The imaging in effect is summerized 

in focusing of all transducers for all points in the solid. If the spatial frequency 

response (SFR), angular orientations, and positions of the transducers are known, 

it is possible to calculate the complex weights necessary for producing a focus at a 

given depth inside the solid. The case at hand requires forming a beam inside solid 

by adjusting the complex gain of transducers in water. In order to accomplish this 

objective, the relationship between the field produced by the transducer and the field 

inside the solid should be understood. One may start with the relationship between 

incident plane wave and resultant field in the solid as the building block for the 

relationship between the field in solid due to a more complex waveform. This can 

be achieved by utilizing the assumption that actual waveform can be expressed as a 

weighted sum of plane waves. 

The problem at hand can be viewed as finding complex gains of each transducer 

such that they form a desired SFR at a prescribed depth inside the solid. The desired 

SFR can be written as the superposition of SFR corresponding to each transducer. 

N  
'i{ki,k2) = Yl ipi{kl,k2)zi (J.l) 

i=l  
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where z; is the unknown complex weight and 

63 
(J.2) 

where is the transmission coefficient of the transmitted L wave, and i l>(kl ,k2)  

is the SFR of the transducer oriented parallel to the interface with its axis passing 

through the point of focus. ^1^ and k2' are components of k vector after rotatation 

by an  angle  0 and ( j ) .  

l  

^2 

\ / \ 
^1 

kn 

/ 

^2 

< '̂3 y 

s in(( j ) )cos{6)  s in{( j ) )s in{9)  cos{( j ) )  

cos(( l ) )cos{0)  —cos[( f ) )s in{9)  s in{( f ) )  ko  (•J-3)  

s in{6)  cos{6)  0 

A pure L type plane wave is incident on a water-solid interface The plane wave 

has an amplitude of unity expressed as The resultant field is composed of a 

reflected L type wave in water and transmitted L and S type wave inside solid. The 

transmission coefficients are 

Al  2bkf^k^ik^  - (4^)^) 

-  D 

= 1 + 
D 

ts i  _  
D 

ts2  _ 
D 

D = -k^[{k^  -  (4^)2)2  + 44^4^6^]  -  bkf^k^P 

(J.4) 

(J.5) 

(J.6) 

(.1.7) 

(J.8) 

where A^^, and are coefficients for the reflected L wave, transmitted 

L wave, and transmitted S waves respectively. 
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In order to solve for the complex gain one can minimize the distance between 

the ideal SFR and the synthesized SFR. The distance can be defined as 

.  .  N 
£  = J  J i ' ^  i^ i{k i ,k2)z i - ' ^{k i ,k2)]  

i=l  

N 
[I] 

2 = 1 

assuming + jy^, we can derive 

d£ 

dx  m 

d£ 

dym 

=  J / {  E  C i c ^ i x i  +  j y i )  +  

N 
E <^m4{xf^- jy} , )  + 

k^m 

— (cm9m + ̂ rn^rn)}dkidk2 

= / / {  E  + 

i^m 

N 
E ^mcliyk+jxf,) + 

k^m 

2%2/m — [crnQm ~  (rn^rn)}dkidk2 

(J.9) 

(J.IO) 

(J.ll) 

By setting the above equations to zero, we obtain 

/ 
A B 

-B A 

'  ' x ^  

<32 

(J.12) 

Although above matrix is a 2N x 2N matrix, due to symmetry only two iV x iV 

matrix inversion is necessary. 

Y  =  { A - ^ B  +  B - ^ A ) - ^ { A - ^ Q i + B - ^ Q 2 )  

X  =  A - ^ { Q i - B Y )  

(J.13) 

(J.14) 
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